Question

# Name the operation you would use.

The bleachers at a football game are full, and of the fans in the bleachers are rooting for the home team. Select the fraction of the bleachers filled with home-team fans.

- Multiplying
- Dividing
- Addition
- Subtractions

Hint:

### The first step when multiplying fractions is to multiply the two numerators. The second step is to multiply the two denominators. Finally, simplify the new fractions.

## The correct answer is: Multiplying

### We are given that 7/8 of the bleachers in a football game are full and 1/2 of the fans in the bleachers are supporting the home team. We have to find the operations by which we can find the number of fans in the bleachers supporting the home team.

Number of fans who are supporting the home team = 7⁄8 × ½

= 7⁄16.

So, 7/16 of the fans in the bleachers are supporting the home team and we found it by multiplication.

Hence, the correct option is A.

The fractions can also be simplified before multiplying by factoring out common factors in the numerator and denominator.

### Related Questions to study

### =

### =

### A team of runners is needed to run a -mile relay race. If each runner must run mile. Find the number of runners they need to run the race.

The fractions can also be simplified before multiplying by factoring out common factors in the numerator and denominator.

### A team of runners is needed to run a -mile relay race. If each runner must run mile. Find the number of runners they need to run the race.

The fractions can also be simplified before multiplying by factoring out common factors in the numerator and denominator.

### Multiply .

### Multiply .

### Simplify =

### Simplify =

### Simplify

### Simplify

### Simplify

### Simplify

### Simplify

The factions can also be simplified first before multiplying by factoring out common factors in the numerator and the denominator.

### Simplify

The factions can also be simplified first before multiplying by factoring out common factors in the numerator and the denominator.

### =

Another approach to the question could be that first we can cut both the 3s, i.e., the 3 in the numerator of the first fraction and the 3 in the denominator of the second fraction. Also, we can reduce the 8 in the denominator of the first fraction and the 2 in the numerator in the second fraction. The 8 gets reduced to 4.

Hence,

Thus, option (a) is the correct option.

### =

Another approach to the question could be that first we can cut both the 3s, i.e., the 3 in the numerator of the first fraction and the 3 in the denominator of the second fraction. Also, we can reduce the 8 in the denominator of the first fraction and the 2 in the numerator in the second fraction. The 8 gets reduced to 4.

Hence,

Thus, option (a) is the correct option.

### =

In the question, another approach could be that we can cut the 2 in the denominator of the first fraction by the 4 in the numerator of the second fraction and reduce the 4 to 2. Then, we get

Thus, we get option (c) as the correct option.

### =

In the question, another approach could be that we can cut the 2 in the denominator of the first fraction by the 4 in the numerator of the second fraction and reduce the 4 to 2. Then, we get

Thus, we get option (c) as the correct option.

### George has pan of brownies. He eats of them. The fraction of brownies George ate. is

### George has pan of brownies. He eats of them. The fraction of brownies George ate. is

### Multiply .

In the question, another approach could be that we can reduce the first fraction

Then we get, . Here, the 3 in the denominator of the first fraction gets cut by the 3 in the numerator of the second fraction. Hence, we get the product as .

Thus, we get option (a) as the correct option.

### Multiply .

In the question, another approach could be that we can reduce the first fraction

Then we get, . Here, the 3 in the denominator of the first fraction gets cut by the 3 in the numerator of the second fraction. Hence, we get the product as .

Thus, we get option (a) as the correct option.

### Multiply .

In the question, another approach could be that we can reduce into by dividing both the numerator and denominator by 2 which is the HCF of both the numerator and the denominator. Then we simply get

Thus, the correct option is option (a)

### Multiply .

In the question, another approach could be that we can reduce into by dividing both the numerator and denominator by 2 which is the HCF of both the numerator and the denominator. Then we simply get

Thus, the correct option is option (a)

### =

In the question, another approach could be that we can cut both the threes and the sevens, i.e., 3 in the numerator of the first fraction and the 3 in the denominator of the second fraction and 7 in the denominator of the first fraction and 7 in the numerator of the second fraction.. That way we do not have to reduce the fraction later into its simplest form.

Hence,

Thus, we get option (d) as the correct option.

### =

In the question, another approach could be that we can cut both the threes and the sevens, i.e., 3 in the numerator of the first fraction and the 3 in the denominator of the second fraction and 7 in the denominator of the first fraction and 7 in the numerator of the second fraction.. That way we do not have to reduce the fraction later into its simplest form.

Hence,

Thus, we get option (d) as the correct option.

### =

In the question, another approach could be that we can cut both the sixes, i.e., 6 in the numerator of the first fraction and the 6 in the denominator of the second fraction. That way we do not have to reduce the fraction later into its simplest form.

Thus, we get option (d) as the correct option.

### =

In the question, another approach could be that we can cut both the sixes, i.e., 6 in the numerator of the first fraction and the 6 in the denominator of the second fraction. That way we do not have to reduce the fraction later into its simplest form.

Thus, we get option (d) as the correct option.