Maths-
General
Easy
Question
A ball is tossed into the air. The function f(x)= -16x2 +4x+5 represents the height in feet of the ball x seconds after it is thrown. At what height was the ball tossed into the air ?
The correct answer is: C= 5
Solution:-
We have given a function of a ball which is tossed in air which represents the height in feet of ball x seconds after it is thrown .
So, when the ball was tossed x = 0
So for x= 0 the value of function will be y- intercept
The standard quadratic form is ax2+bx+c=y
In this the term c gives us the y-intercept of the curve
The given function is
f(x)= -16x2 +4x+5
In the given case c gives the height from which the ball is thrown.
C= 5
So, height from which the ball is tossed is 5 feets.
Related Questions to study
Maths-
Graph the function f(x)= -3x2 +12x+5
Graph the function f(x)= -3x2 +12x+5
Maths-General
Maths-
Identify the y – intercept , axis of symmetry , and vertex of the graph of each function . H(x)= -3x2+7x+1
Identify the y – intercept , axis of symmetry , and vertex of the graph of each function . H(x)= -3x2+7x+1
Maths-General
Maths-
Identify the y – intercept , axis of symmetry , and vertex of the graph of each function . G(x)= -x2+4x+5
Identify the y – intercept , axis of symmetry , and vertex of the graph of each function . G(x)= -x2+4x+5
Maths-General
Maths-
Graph the function f(x)= 3x2-6x+2
Graph the function f(x)= 3x2-6x+2
Maths-General
Maths-
Two models are used to predict monthly revenue for a new sports drink. In each model, x is the number of $1 – price increases from the original $2 per bottle price.
Model A : f(x)= -12.5 x2+75x+200
Model B:
Two models are used to predict monthly revenue for a new sports drink. In each model, x is the number of $1 – price increases from the original $2 per bottle price.
Model A : f(x)= -12.5 x2+75x+200
Model B:
Maths-General
Maths-
What is the maximum value of f(x)= -4x2 +16x+12
What is the maximum value of f(x)= -4x2 +16x+12
Maths-General
Maths-
An object is launched at 64 ft per second from an elevated platform , The Quadratic function shown in the table model its trajectory f(x) over time, x, select all the true statements .
X |
0 |
1 |
2 |
4 |
F(x) |
6 |
54 |
70 |
6 |
An object is launched at 64 ft per second from an elevated platform , The Quadratic function shown in the table model its trajectory f(x) over time, x, select all the true statements .
X |
0 |
1 |
2 |
4 |
F(x) |
6 |
54 |
70 |
6 |
Maths-General
Maths-
A banner is hung for a party . The distance from a point on the bottom edge of the banner to the floor can be determined by using the function f(x)= 0.25x2 -x+9.5, where x is the distance , in feet , of the point from the left end of the banner . How high above the floor is the lowest point on the bottom edge of the banner , Explain.
A banner is hung for a party . The distance from a point on the bottom edge of the banner to the floor can be determined by using the function f(x)= 0.25x2 -x+9.5, where x is the distance , in feet , of the point from the left end of the banner . How high above the floor is the lowest point on the bottom edge of the banner , Explain.
Maths-General
Maths-
The position of a ball after it is kicked can be determined by using the function f(x)= -0.11 x2+2.2x+1, where y is the height , in feet , above the ground and x is the horizontal distance , in feet above the ground and x is the horizontal distance, in feet, of the ball from the point at which it was kicked . What is the height of the ball when it is kicked ? What is the highest point of the ball in the air ?
The position of a ball after it is kicked can be determined by using the function f(x)= -0.11 x2+2.2x+1, where y is the height , in feet , above the ground and x is the horizontal distance , in feet above the ground and x is the horizontal distance, in feet, of the ball from the point at which it was kicked . What is the height of the ball when it is kicked ? What is the highest point of the ball in the air ?
Maths-General
Maths-
The balls are tossed up into the air . The function f(x)= -4.9x2 +14.7 x+0.975 models the path of Ball A. the path of ball B over time is shown in the table. Which ball reaches a greater height ? How much greater . Explain how you can answer without graphing either function .
The balls are tossed up into the air . The function f(x)= -4.9x2 +14.7 x+0.975 models the path of Ball A. the path of ball B over time is shown in the table. Which ball reaches a greater height ? How much greater . Explain how you can answer without graphing either function .
Maths-General
Maths-
Write each function in standard form . F(x)= - (x+3)2+8
Write each function in standard form . F(x)= - (x+3)2+8
Maths-General
Maths-
Write each function in standard form .
F(x)= -2(x-9)2 +15
Write each function in standard form .
F(x)= -2(x-9)2 +15
Maths-General
Maths-
Write each function in standard form . F(x)= 4(x+1)2 -3
Write each function in standard form . F(x)= 4(x+1)2 -3
Maths-General
Maths-