Maths-
General
Easy

Question

stack lim with x blank rightwards arrow fraction numerator pi over denominator 2 end fraction below invisible function application open parentheses fraction numerator 1 plus c o s x over denominator 1 minus c o s x end fraction close parentheses to the power of s e c x end exponent equals

  1. e    
  2. e to the power of 2 end exponent    
  3. e to the power of 3 end exponent    
  4. 1/e    

The correct answer is: e to the power of 2 end exponent


    Related Questions to study

    General
    Maths-

    The direction cosines of the line joining the points (4, 3, - 5) and (-2, 1, -8) are

    For such questions, we should know formula to find direction cosines.

    The direction cosines of the line joining the points (4, 3, - 5) and (-2, 1, -8) are

    Maths-General

    For such questions, we should know formula to find direction cosines.

    General
    Maths-

    The locus of x2 + y2 + z2 = 0 is

    For such questions, we have to be careful about points satisfying the equation.

    The locus of x2 + y2 + z2 = 0 is

    Maths-General

    For such questions, we have to be careful about points satisfying the equation.

    General
    Maths-

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    Maths-General
    parallel
    General
    Maths-

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    Maths-General
    General
    Maths-

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Maths-General
    General
    Maths-

    stack lim with x blank rightwards arrow 0 below invisible function application fraction numerator 1 minus c o s a x over denominator x open parentheses e to the power of b x end exponent minus 1 close parentheses end fraction equals

    stack lim with x blank rightwards arrow 0 below invisible function application fraction numerator 1 minus c o s a x over denominator x open parentheses e to the power of b x end exponent minus 1 close parentheses end fraction equals

    Maths-General
    parallel
    General
    Maths-

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator open square brackets x close square brackets over denominator x end fraction left parenthesis W h e r e blank open square brackets. close square brackets blank d e n o t e s blank g r e a t e s t blank i n t e g e r blank f u n c t i o n right parenthesis=

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator open square brackets x close square brackets over denominator x end fraction left parenthesis W h e r e blank open square brackets. close square brackets blank d e n o t e s blank g r e a t e s t blank i n t e g e r blank f u n c t i o n right parenthesis=

    Maths-General
    General
    Maths-

    I f stack lim with x blank rightwards arrow 5 below invisible function application fraction numerator x to the power of k end exponent minus 5 to the power of k end exponent over denominator x minus 5 end fraction equals 500 comma blank t h e n blank t h e blank p o s i t i v e blank i n t e g r a l blank v a l u e blank o f blank k blank i s

    I f stack lim with x blank rightwards arrow 5 below invisible function application fraction numerator x to the power of k end exponent minus 5 to the power of k end exponent over denominator x minus 5 end fraction equals 500 comma blank t h e n blank t h e blank p o s i t i v e blank i n t e g r a l blank v a l u e blank o f blank k blank i s

    Maths-General
    General
    Maths-

    If blank f open parentheses 9 close parentheses equals 9 comma blank f to the power of 1 end exponent open parentheses 9 close parentheses equals 4 comma blank stack lim with x blank rightwards arrow 9 below invisible function application fraction numerator square root of f open parentheses x close parentheses end root minus 3 over denominator square root of x minus 3 end fraction equals

    If blank f open parentheses 9 close parentheses equals 9 comma blank f to the power of 1 end exponent open parentheses 9 close parentheses equals 4 comma blank stack lim with x blank rightwards arrow 9 below invisible function application fraction numerator square root of f open parentheses x close parentheses end root minus 3 over denominator square root of x minus 3 end fraction equals

    Maths-General
    parallel
    General
    Maths-

    I f blank stack text Lim end text with text x end text rightwards arrow a plus below invisible function application text f(x) end text equals k blank a n d blank stack text Lim end text with text x end text rightwards arrow a minus below invisible function application text f(x) = end text text l then end text stack text  Lim end text with text x end text rightwards arrow a below invisible function application text f(x) = end text text end text blank

    For such questions, we should know different the condition of limit to exist.

    I f blank stack text Lim end text with text x end text rightwards arrow a plus below invisible function application text f(x) end text equals k blank a n d blank stack text Lim end text with text x end text rightwards arrow a minus below invisible function application text f(x) = end text text l then end text stack text  Lim end text with text x end text rightwards arrow a below invisible function application text f(x) = end text text end text blank

    Maths-General

    For such questions, we should know different the condition of limit to exist.

    General
    Maths-

    c o t to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses minus t a n to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses equals x blank greater or equal than 0 blank then sinx =

    c o t to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses minus t a n to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses equals x blank greater or equal than 0 blank then sinx =

    Maths-General
    General
    Maths-

    If t a n open parentheses s e c to the power of negative 1 end exponent fraction numerator text 1 end text over denominator text x end text end fraction close parentheses equals s i n open parentheses T a n to the power of negative 1 end exponent 2 close parenthesesthen x=

    If t a n open parentheses s e c to the power of negative 1 end exponent fraction numerator text 1 end text over denominator text x end text end fraction close parentheses equals s i n open parentheses T a n to the power of negative 1 end exponent 2 close parenthesesthen x=

    Maths-General
    parallel
    General
    Maths-

    If 2 T a n to the power of negative 1 end exponent open parentheses t a n blank alpha blank t a n blank beta close parentheses blank = x then x =

    If 2 T a n to the power of negative 1 end exponent open parentheses t a n blank alpha blank t a n blank beta close parentheses blank = x then x =

    Maths-General
    General
    Maths-

    I : T a n to the power of negative 1 end exponent 2 + T a n to the power of negative 1 end exponent 3 equals fraction numerator text 3π end text over denominator text 4 end text end fraction
    II : c o s open curly brackets C o s to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses plus S i n to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses close curly brackets = 0
    Which of the above statements is correct?

    I : T a n to the power of negative 1 end exponent 2 + T a n to the power of negative 1 end exponent 3 equals fraction numerator text 3π end text over denominator text 4 end text end fraction
    II : c o s open curly brackets C o s to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses plus S i n to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses close curly brackets = 0
    Which of the above statements is correct?

    Maths-General
    General
    Chemistry-

    The solubility product of a salt having general formula M X subscript 2 end subscript in water is 4 cross times 10 to the power of negative 12 end exponent. The concentration of M to the power of 2 plus end exponent ions in the aqueous solution of the salt is:

    The solubility product of a salt having general formula M X subscript 2 end subscript in water is 4 cross times 10 to the power of negative 12 end exponent. The concentration of M to the power of 2 plus end exponent ions in the aqueous solution of the salt is:

    Chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.