Maths-
General
Easy

Question

The direction cosines of the line joining the points (4, 3, - 5) and (-2, 1, -8) are

  1. < 2, 4, -13 >    
  2. < 6, 2, 3 >    
  3. < 6/7, 2/7, 3/7 >    
  4. None of these    

hintHint:

We are given the coordinates of two points. We have to find the direction cosines of the line joining the two points. Direction cosines are the values of cosines of the given line. They are the cosines of angles it makes with the three axis.

The correct answer is: < 6/7, 2/7, 3/7 >


    We will denote the given point by P and Q.
    P = (4,3,-5)
    Q = (-2,1,-8)
    Direction cosines are denoted by l, m, and n.
    To find the direction cosines, we take the difference between the coordinates and the distance between two points. It is the ratio of direction ratio and distance between the points.
    fraction numerator x subscript 2 minus x subscript 1 over denominator P Q end fraction comma space fraction numerator y subscript 2 space minus y subscript 1 over denominator P Q end fraction comma fraction numerator z subscript 2 minus z subscript 1 over denominator P Q end fraction
    We will find the distance between the given points using the distance formula.
    P Q space equals square root of left parenthesis x subscript 1 minus x subscript 2 right parenthesis squared plus left parenthesis y subscript 1 space minus space y subscript 2 right parenthesis squared plus left parenthesis z subscript 1 space minus z subscript 2 right parenthesis squared end root
space space space space space space space equals square root of left square bracket 4 minus left parenthesis negative 2 right parenthesis right square bracket squared plus left parenthesis 3 minus 1 right parenthesis to the power of 2 end exponent plus left square bracket left parenthesis negative 5 right parenthesis space minus left parenthesis negative 8 right parenthesis right square bracket squared end root
space space space space space space space equals square root of left parenthesis 4 space plus space 2 right parenthesis squared space plus space left parenthesis 3 space minus 1 right parenthesis squared plus space left parenthesis negative 5 plus 8 right parenthesis squared end root
space space space space space space space equals square root of 6 squared plus 2 squared plus 3 squared end root space
space space space space space space space equals square root of 36 plus 4 plus 9 end root
space space space space space space space equals square root of 49
space space space space space space space space equals 7
P Q space equals space 7
    Direction ratios are as follows:
    x1 - x= 4 - (-2)
    = 4 + 2
    = 6
    y1 - y2 = 3 - 2
    = 1
    z1 - z2 = -5 - (-8)
    = -5 + 8
    = 3
    ubstituting the values,
    The direction cosines of the line joining two points are as follows:

    l comma space m comma space n space equals space fraction numerator x subscript 1 minus x subscript 2 over denominator P Q end fraction comma fraction numerator y subscript 1 minus y subscript 2 over denominator P Q end fraction comma fraction numerator z subscript 1 minus z subscript 2 over denominator P Q end fraction
space space space space space space space space space space space space equals 6 over 7 comma 2 over 7 comma 3 over 7

S o comma space t h e space r i g h t space o p t i o n space i s space less than 6 over 7 comma 2 over 7 comma 3 over 7 greater than

    For such questions, we should know formula to find direction cosines.

    Related Questions to study

    General
    Maths-

    The locus of x2 + y2 + z2 = 0 is

    For such questions, we have to be careful about points satisfying the equation.

    The locus of x2 + y2 + z2 = 0 is

    Maths-General

    For such questions, we have to be careful about points satisfying the equation.

    General
    Maths-

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator 1 over denominator square root of x to the power of 2 end exponent plus 4 x plus 7 end root minus x end fraction equals

    Maths-General
    General
    Maths-

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    stack lim with x blank rightwards arrow 0 below invisible function application x c o s fraction numerator 1 over denominator x end fraction equals

    Maths-General
    parallel
    General
    Maths-

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Let f (x) be a quadratic expression which is positive for all real x. If g(x) = f (x) + f ¢ (x) + f ¢¢ (x), then for any real x

    Maths-General
    General
    Maths-

    stack lim with x blank rightwards arrow 0 below invisible function application fraction numerator 1 minus c o s a x over denominator x open parentheses e to the power of b x end exponent minus 1 close parentheses end fraction equals

    stack lim with x blank rightwards arrow 0 below invisible function application fraction numerator 1 minus c o s a x over denominator x open parentheses e to the power of b x end exponent minus 1 close parentheses end fraction equals

    Maths-General
    General
    Maths-

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator open square brackets x close square brackets over denominator x end fraction left parenthesis W h e r e blank open square brackets. close square brackets blank d e n o t e s blank g r e a t e s t blank i n t e g e r blank f u n c t i o n right parenthesis=

    stack lim with x blank rightwards arrow infinity below invisible function application fraction numerator open square brackets x close square brackets over denominator x end fraction left parenthesis W h e r e blank open square brackets. close square brackets blank d e n o t e s blank g r e a t e s t blank i n t e g e r blank f u n c t i o n right parenthesis=

    Maths-General
    parallel
    General
    Maths-

    I f stack lim with x blank rightwards arrow 5 below invisible function application fraction numerator x to the power of k end exponent minus 5 to the power of k end exponent over denominator x minus 5 end fraction equals 500 comma blank t h e n blank t h e blank p o s i t i v e blank i n t e g r a l blank v a l u e blank o f blank k blank i s

    I f stack lim with x blank rightwards arrow 5 below invisible function application fraction numerator x to the power of k end exponent minus 5 to the power of k end exponent over denominator x minus 5 end fraction equals 500 comma blank t h e n blank t h e blank p o s i t i v e blank i n t e g r a l blank v a l u e blank o f blank k blank i s

    Maths-General
    General
    Maths-

    If blank f open parentheses 9 close parentheses equals 9 comma blank f to the power of 1 end exponent open parentheses 9 close parentheses equals 4 comma blank stack lim with x blank rightwards arrow 9 below invisible function application fraction numerator square root of f open parentheses x close parentheses end root minus 3 over denominator square root of x minus 3 end fraction equals

    If blank f open parentheses 9 close parentheses equals 9 comma blank f to the power of 1 end exponent open parentheses 9 close parentheses equals 4 comma blank stack lim with x blank rightwards arrow 9 below invisible function application fraction numerator square root of f open parentheses x close parentheses end root minus 3 over denominator square root of x minus 3 end fraction equals

    Maths-General
    General
    Maths-

    I f blank stack text Lim end text with text x end text rightwards arrow a plus below invisible function application text f(x) end text equals k blank a n d blank stack text Lim end text with text x end text rightwards arrow a minus below invisible function application text f(x) = end text text l then end text stack text  Lim end text with text x end text rightwards arrow a below invisible function application text f(x) = end text text end text blank

    For such questions, we should know different the condition of limit to exist.

    I f blank stack text Lim end text with text x end text rightwards arrow a plus below invisible function application text f(x) end text equals k blank a n d blank stack text Lim end text with text x end text rightwards arrow a minus below invisible function application text f(x) = end text text l then end text stack text  Lim end text with text x end text rightwards arrow a below invisible function application text f(x) = end text text end text blank

    Maths-General

    For such questions, we should know different the condition of limit to exist.

    parallel
    General
    Maths-

    c o t to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses minus t a n to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses equals x blank greater or equal than 0 blank then sinx =

    c o t to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses minus t a n to the power of negative 1 end exponent open parentheses square root of c o s alpha end root close parentheses equals x blank greater or equal than 0 blank then sinx =

    Maths-General
    General
    Maths-

    If t a n open parentheses s e c to the power of negative 1 end exponent fraction numerator text 1 end text over denominator text x end text end fraction close parentheses equals s i n open parentheses T a n to the power of negative 1 end exponent 2 close parenthesesthen x=

    If t a n open parentheses s e c to the power of negative 1 end exponent fraction numerator text 1 end text over denominator text x end text end fraction close parentheses equals s i n open parentheses T a n to the power of negative 1 end exponent 2 close parenthesesthen x=

    Maths-General
    General
    Maths-

    If 2 T a n to the power of negative 1 end exponent open parentheses t a n blank alpha blank t a n blank beta close parentheses blank = x then x =

    If 2 T a n to the power of negative 1 end exponent open parentheses t a n blank alpha blank t a n blank beta close parentheses blank = x then x =

    Maths-General
    parallel
    General
    Maths-

    I : T a n to the power of negative 1 end exponent 2 + T a n to the power of negative 1 end exponent 3 equals fraction numerator text 3π end text over denominator text 4 end text end fraction
    II : c o s open curly brackets C o s to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses plus S i n to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses close curly brackets = 0
    Which of the above statements is correct?

    I : T a n to the power of negative 1 end exponent 2 + T a n to the power of negative 1 end exponent 3 equals fraction numerator text 3π end text over denominator text 4 end text end fraction
    II : c o s open curly brackets C o s to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses plus S i n to the power of negative 1 end exponent open parentheses fraction numerator text -1 end text over denominator text 7 end text end fraction close parentheses close curly brackets = 0
    Which of the above statements is correct?

    Maths-General
    General
    Chemistry-

    The solubility product of a salt having general formula M X subscript 2 end subscript in water is 4 cross times 10 to the power of negative 12 end exponent. The concentration of M to the power of 2 plus end exponent ions in the aqueous solution of the salt is:

    The solubility product of a salt having general formula M X subscript 2 end subscript in water is 4 cross times 10 to the power of negative 12 end exponent. The concentration of M to the power of 2 plus end exponent ions in the aqueous solution of the salt is:

    Chemistry-General
    General
    Chemistry-

    the-dissociation of weak electrolyte (weak acid) is expressed in terms of Ostwald dilution law stronger is the acid, weaker is its conjugate base_ The dissociation constants of an acid (K subscript a end subscript) and its conjugate base (K subscript b end subscript ) are related by the given relation: -
    K subscript w end subscript equals K subscript a end subscript cross times K subscript b end subscript
    At 25 to the power of ring operator end exponent C comma K subscript w end subscript (Ionic product of water) equals 10 to the power of negative 14 end exponent
    Phosphoric acid isa weak acid. It is used in fertilizer, food, detergent and toothpaste. Structure of phosphoric acid is:

    Aqueous solution of phosphoric acid with a density oflg mL-1 containing 0.05% by weight of phosphoric acid is used to impart tart taste to many soft drinks. Phosphate ion is an inteife ring radical in qualitative analysis. It should be removed for analysis beyond third group of qualitative analysis
    the basicity of phosphoric acid is:

    the-dissociation of weak electrolyte (weak acid) is expressed in terms of Ostwald dilution law stronger is the acid, weaker is its conjugate base_ The dissociation constants of an acid (K subscript a end subscript) and its conjugate base (K subscript b end subscript ) are related by the given relation: -
    K subscript w end subscript equals K subscript a end subscript cross times K subscript b end subscript
    At 25 to the power of ring operator end exponent C comma K subscript w end subscript (Ionic product of water) equals 10 to the power of negative 14 end exponent
    Phosphoric acid isa weak acid. It is used in fertilizer, food, detergent and toothpaste. Structure of phosphoric acid is:

    Aqueous solution of phosphoric acid with a density oflg mL-1 containing 0.05% by weight of phosphoric acid is used to impart tart taste to many soft drinks. Phosphate ion is an inteife ring radical in qualitative analysis. It should be removed for analysis beyond third group of qualitative analysis
    the basicity of phosphoric acid is:

    Chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.