Physics-
General
Easy

Question

A thin non conducting disc of radius R is rotating clockwise (see figure) with an angular velocity w about its central axis, which is perpendicular to its plane. Both its surfaces carry +ve charges of uniform surface density. Half the disc is in a region of a uniform, unidirectional magnetic field B parallel to the plane of the disc, as shown. Then,

  1. The net torque on the disc is zero.    
  2. The net torque vector on the disc is directed leftwards.    
  3. The net torque vector on the disc is directed rightwards.    
  4. The net torque vector on the disc is parallel to B.    

The correct answer is: The net torque vector on the disc is directed leftwards.

Related Questions to study

General
Physics-

A conducting ring of mass 2kg and radius 0.5m is placed on a smooth horizontal plane. The ring carries a current i=4A. A horizontal magnetic field B=10T is switched on at time t=0 as shown in figure. The initial angular acceleration of the ring will be

A conducting ring of mass 2kg and radius 0.5m is placed on a smooth horizontal plane. The ring carries a current i=4A. A horizontal magnetic field B=10T is switched on at time t=0 as shown in figure. The initial angular acceleration of the ring will be

Physics-General
General
Physics-

Calculate the magnetic moment of a thin wire with a current I=0.8A, wound tightly on half a tore. The diameter of the cross-section of the tore is equal to d=5.0cm, the number of turns is N=500.

Calculate the magnetic moment of a thin wire with a current I=0.8A, wound tightly on half a tore. The diameter of the cross-section of the tore is equal to d=5.0cm, the number of turns is N=500.

Physics-General
General
Physics-

A straight current carrying conductor is placed in such a way that the current in the conductor flows in the direction out of the plane of the paper. The conductor is placed between two poles of two magnets, as shown. The conductor will experience a force in the direction towards

A straight current carrying conductor is placed in such a way that the current in the conductor flows in the direction out of the plane of the paper. The conductor is placed between two poles of two magnets, as shown. The conductor will experience a force in the direction towards

Physics-General
parallel
General
Physics-

A long horizontal wire AB which is free to move in vertical plane and carries a steady current 20A, is in equilibrium at a height of 0.1 meter above another parallel long wire CD, which is fixed in horizontal plane and carries current 30A, as shown in the figure. Find the time period of oscillations when AB is slightly depressed open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

A long horizontal wire AB which is free to move in vertical plane and carries a steady current 20A, is in equilibrium at a height of 0.1 meter above another parallel long wire CD, which is fixed in horizontal plane and carries current 30A, as shown in the figure. Find the time period of oscillations when AB is slightly depressed open parentheses g equals 10 m divided by s to the power of 2 end exponent close parentheses

Physics-General
General
Physics-

Figure shows a rod PQ of length 20.0cm and mass 200g suspended through a fixed point O by two threads of lengths 20.0cm each. A magnetic field of strength 0.500T exists in the vicinity of the wire PQ as shown in the figure. The wires connecting PQ with the battery are loose and exert no force on PQ. A current of 2.0A is established when the switch S is closed. Find the tension in the threads now.

Figure shows a rod PQ of length 20.0cm and mass 200g suspended through a fixed point O by two threads of lengths 20.0cm each. A magnetic field of strength 0.500T exists in the vicinity of the wire PQ as shown in the figure. The wires connecting PQ with the battery are loose and exert no force on PQ. A current of 2.0A is established when the switch S is closed. Find the tension in the threads now.

Physics-General
General
Physics-

A particle of charge Q and mass M moves in a circular path of radius R in a uniform magnetic field of magnitude B. The same particle now moves with the same speed in a circular path of same radius R in the space between the cylindrical electrodes of the cylindrical capacitor. The radius of the inner electrode is R/2 while that of the outer electrode is 3R/2. Then the potential difference between the capacitor electrodes must be

A particle of charge Q and mass M moves in a circular path of radius R in a uniform magnetic field of magnitude B. The same particle now moves with the same speed in a circular path of same radius R in the space between the cylindrical electrodes of the cylindrical capacitor. The radius of the inner electrode is R/2 while that of the outer electrode is 3R/2. Then the potential difference between the capacitor electrodes must be

Physics-General
parallel
General
Physics-

A particle of specific charge (q/m) is projected from the origin of coordinates with initial velocity [ui - vj] Uniform electric magnetic fields exist in the region along the +y direction, of magnitude E and B. The particle will definitely return to the origin once if

A particle of specific charge (q/m) is projected from the origin of coordinates with initial velocity [ui - vj] Uniform electric magnetic fields exist in the region along the +y direction, of magnitude E and B. The particle will definitely return to the origin once if

Physics-General
General
Physics-

A particle moving with velocity v having specific charge (q/m) enters a region of magnetic field B having width d equals fraction numerator 3 m v over denominator 5 q B end fraction at angle 53° to the boundary of magnetic field. Find the angle q in the diagram.

A particle moving with velocity v having specific charge (q/m) enters a region of magnetic field B having width d equals fraction numerator 3 m v over denominator 5 q B end fraction at angle 53° to the boundary of magnetic field. Find the angle q in the diagram.

Physics-General
General
Physics-

A charged particle enters a uniform magnetic field perpendicular to its initial direction travelling in air. The path of the particle is seen to follow the path in figure. Which of statements 1-3 is/are correct? [1] The magnetic field strength may have been increased while the particle was travelling in air [2] The particle lost energy by ionising the air [3] The particle lost charge by ionising the air

A charged particle enters a uniform magnetic field perpendicular to its initial direction travelling in air. The path of the particle is seen to follow the path in figure. Which of statements 1-3 is/are correct? [1] The magnetic field strength may have been increased while the particle was travelling in air [2] The particle lost energy by ionising the air [3] The particle lost charge by ionising the air

Physics-General
parallel
General
Physics-

A particle of specific charge alpha (charge per unit mass) is released at time t=0 from origin with an initial velocity of stack v with rightwards arrow on top equals v subscript 0 end subscript stack i with ˆ on top in a uniform magnetic field stack B with rightwards arrow on top equals negative B subscript 0 end subscript stack k with ˆ on top. Find position of particle at any time t.

A particle of specific charge alpha (charge per unit mass) is released at time t=0 from origin with an initial velocity of stack v with rightwards arrow on top equals v subscript 0 end subscript stack i with ˆ on top in a uniform magnetic field stack B with rightwards arrow on top equals negative B subscript 0 end subscript stack k with ˆ on top. Find position of particle at any time t.

Physics-General
General
Physics-

A block of mass m & charge q is released on a long smooth inclined plane magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface.

A block of mass m & charge q is released on a long smooth inclined plane magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface.

Physics-General
General
Physics-

The direction of magnetic force on the electron as shown in the diagram is along

The direction of magnetic force on the electron as shown in the diagram is along

Physics-General
parallel
General
Physics-

A mass spectrometer is a device which select particle of equal mass. An ion with electric charge q>0 and mass m starts at rest from a source S and is accelerated through a potential difference V. It passes through a hole into a region of constant magnetic field stack B with rightwards arrow on top perpendicular to the plane of the paper as shown in the figure. The particle is deflected by the magnetic field and emerges through the bottom hole at a distance d from the top hole. The mass of the particle is

A mass spectrometer is a device which select particle of equal mass. An ion with electric charge q>0 and mass m starts at rest from a source S and is accelerated through a potential difference V. It passes through a hole into a region of constant magnetic field stack B with rightwards arrow on top perpendicular to the plane of the paper as shown in the figure. The particle is deflected by the magnetic field and emerges through the bottom hole at a distance d from the top hole. The mass of the particle is

Physics-General
General
Physics-

A charged particle A of charge q=2C has velocity v=100m/s. When it passes through point A and has velocity in the direction shown. The strength of magnetic field at point B due to this moving charge is (r=2m).

A charged particle A of charge q=2C has velocity v=100m/s. When it passes through point A and has velocity in the direction shown. The strength of magnetic field at point B due to this moving charge is (r=2m).

Physics-General
General
Physics-

A current I flows in along straight wire with cross section having the form a half circular ring of radius R The magnetic field induction at the point O is

A current I flows in along straight wire with cross section having the form a half circular ring of radius R The magnetic field induction at the point O is

Physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.