Physics-
General
Easy

Question

In the figure is shown Young’s double slit experiment. Q is the position of the first bright fringe on the right side of O. P is the 11th fringe on the other side, as measured from Q. If the wavelength of the light used is 6000 cross times 1 0 to the power of negative 10 end exponent m, then S subscript 1 end subscript B will be equal to

  1. 6 cross times 1 0 to the power of negative 6 end exponent m    
  2. 6.6 cross times 1 0 to the power of negative 6 end exponent m    
  3. 3.138 cross times 1 0 to the power of negative 7 end exponent m    
  4. 3.144 cross times 1 0 to the power of negative 7 end exponent m    

The correct answer is: 6 cross times 1 0 to the power of negative 6 end exponent m


    P is the position of 11th bright fringe from Q. From central position O, P will be the position of 10th bright fringe.
    Path difference between the waves reaching at P = S1B =10 l = 10 ´ 6000 ´ 10–10 = 6 ´ 10–6m

    Related Questions to study

    General
    Physics-

    When one of the slits of Young’s experiment is covered with a transparent sheet of thickness 4.8 mm, the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe

    When one of the slits of Young’s experiment is covered with a transparent sheet of thickness 4.8 mm, the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe

    Physics-General
    General
    Physics-

    Figure here shows P and Q as two equally intense coherent sources emitting radiations of wavelength 20 m. The separation PQ is 5.0 m and phase of P is ahead of the phase of Q by 90o. A, B and C are three distant points of observation equidistant from the mid-point of PQ. The intensity of radiations at A, B, C will bear the ratio

    Figure here shows P and Q as two equally intense coherent sources emitting radiations of wavelength 20 m. The separation PQ is 5.0 m and phase of P is ahead of the phase of Q by 90o. A, B and C are three distant points of observation equidistant from the mid-point of PQ. The intensity of radiations at A, B, C will bear the ratio

    Physics-General
    General
    Maths-

    Represent -7 + 3 on number line

    When we add something to the given number, we don’t start counting the second number from zero. We count the places from the number itself. Any negative value means we move in left direction. Any positive value means we move in right direction.

    Represent -7 + 3 on number line

    Maths-General

    When we add something to the given number, we don’t start counting the second number from zero. We count the places from the number itself. Any negative value means we move in left direction. Any positive value means we move in right direction.

    parallel
    General
    Maths-

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 4 plus 5 s i n x end fraction d x equals 1 third l o g vertical line fraction numerator 2 t a n left parenthesis x divided by 2 right parenthesis plus 1 over denominator 2 t a n left parenthesis x divided by 2 right parenthesis plus 4 end fraction vertical line plus c
    Statement-II: If 0<a<b, then integral subscript blank superscript blank fraction numerator d x over denominator a plus b s i n x end fraction equals fraction numerator 1 over denominator square root of b squared minus a squared end root end fraction l o g vertical line fraction numerator a t a n left parenthesis x divided by 2 right parenthesis plus b minus square root of b squared minus a squared end root over denominator a t a n left parenthesis x divided by 2 right parenthesis plus b plus square root of b squared minus a squared end root end fraction vertical line plus c

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 4 plus 5 s i n x end fraction d x equals 1 third l o g vertical line fraction numerator 2 t a n left parenthesis x divided by 2 right parenthesis plus 1 over denominator 2 t a n left parenthesis x divided by 2 right parenthesis plus 4 end fraction vertical line plus c
    Statement-II: If 0<a<b, then integral subscript blank superscript blank fraction numerator d x over denominator a plus b s i n x end fraction equals fraction numerator 1 over denominator square root of b squared minus a squared end root end fraction l o g vertical line fraction numerator a t a n left parenthesis x divided by 2 right parenthesis plus b minus square root of b squared minus a squared end root over denominator a t a n left parenthesis x divided by 2 right parenthesis plus b plus square root of b squared minus a squared end root end fraction vertical line plus c

    Maths-General
    General
    Maths-

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 5 plus 4 c o s x end fraction d x equals 2 over 3 t a n to the power of negative 1 end exponent left parenthesis fraction numerator 4 plus 5 t a n left parenthesis x divided by 2 right parenthesis over denominator 3 end fraction right parenthesis plus c
    Statement-II: If a>0, a>b, then integral subscript blank superscript blank fraction numerator d x over denominator a plus b s i n x end fraction equals fraction numerator 2 over denominator square root of a squared minus b squared end root end fraction t a n to the power of negative 1 end exponent left parenthesis fraction numerator b plus a t a n left parenthesis x divided by 2 right parenthesis over denominator square root of a squared minus b squared end root end fraction right parenthesis plus c

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 5 plus 4 c o s x end fraction d x equals 2 over 3 t a n to the power of negative 1 end exponent left parenthesis fraction numerator 4 plus 5 t a n left parenthesis x divided by 2 right parenthesis over denominator 3 end fraction right parenthesis plus c
    Statement-II: If a>0, a>b, then integral subscript blank superscript blank fraction numerator d x over denominator a plus b s i n x end fraction equals fraction numerator 2 over denominator square root of a squared minus b squared end root end fraction t a n to the power of negative 1 end exponent left parenthesis fraction numerator b plus a t a n left parenthesis x divided by 2 right parenthesis over denominator square root of a squared minus b squared end root end fraction right parenthesis plus c

    Maths-General
    General
    Maths-

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 2 c o s x end fraction d x equals fraction numerator 2 over denominator square root of 5 end fraction t a n to the power of negative 1 end exponent left parenthesis fraction numerator 1 over denominator square root of 5 end fraction t a n x over 2 right parenthesis plus c
    Statement-II: If a>b then integral subscript blank superscript blank fraction numerator d x over denominator a plus b c o s x end fraction equals fraction numerator 2 over denominator square root of a squared minus b squared end root end fraction t a n to the power of negative 1 end exponent left parenthesis square root of fraction numerator a minus b over denominator a plus b end fraction end root t a n x over 2 right parenthesis plus c

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 2 c o s x end fraction d x equals fraction numerator 2 over denominator square root of 5 end fraction t a n to the power of negative 1 end exponent left parenthesis fraction numerator 1 over denominator square root of 5 end fraction t a n x over 2 right parenthesis plus c
    Statement-II: If a>b then integral subscript blank superscript blank fraction numerator d x over denominator a plus b c o s x end fraction equals fraction numerator 2 over denominator square root of a squared minus b squared end root end fraction t a n to the power of negative 1 end exponent left parenthesis square root of fraction numerator a minus b over denominator a plus b end fraction end root t a n x over 2 right parenthesis plus c

    Maths-General
    parallel
    General
    Maths-

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 4 c o s x end fraction d x equals fraction numerator 1 over denominator square root of 7 end fraction l o g vertical line fraction numerator square root of 7 plus t a n left parenthesis x divided by 2 right parenthesis over denominator square root of 7 minus t a n left parenthesis x divided by 2 right parenthesis end fraction vertical line plus c
    Statement-II: If a<b then integral subscript blank superscript blank fraction numerator d x over denominator a plus b c o s x end fraction equals fraction numerator 1 over denominator square root of b squared minus a squared end root end fraction l o g vertical line fraction numerator square root of b plus a end root plus square root of b minus a end root t a n left parenthesis x divided by 2 right parenthesis over denominator square root of b plus a end root minus square root of b minus a end root t a n left parenthesis x divided by 2 right parenthesis end fraction vertical line plus c

    Statement-I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 4 c o s x end fraction d x equals fraction numerator 1 over denominator square root of 7 end fraction l o g vertical line fraction numerator square root of 7 plus t a n left parenthesis x divided by 2 right parenthesis over denominator square root of 7 minus t a n left parenthesis x divided by 2 right parenthesis end fraction vertical line plus c
    Statement-II: If a<b then integral subscript blank superscript blank fraction numerator d x over denominator a plus b c o s x end fraction equals fraction numerator 1 over denominator square root of b squared minus a squared end root end fraction l o g vertical line fraction numerator square root of b plus a end root plus square root of b minus a end root t a n left parenthesis x divided by 2 right parenthesis over denominator square root of b plus a end root minus square root of b minus a end root t a n left parenthesis x divided by 2 right parenthesis end fraction vertical line plus c

    Maths-General
    General
    Maths-

    I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 4 c o s x end fraction d x equals fraction numerator 1 over denominator square root of 7 end fraction l o g left square bracket fraction numerator square root of 7 plus t a n left parenthesis x divided by 2 right parenthesis over denominator square root of 7 minus t a n left parenthesis x divided by 2 right parenthesis end fraction right square bracket plus c
    II: integral subscript blank superscript blank fraction numerator d x over denominator c o s x minus s i n x end fraction equals fraction numerator 1 over denominator square root of 2 end fraction l o g vertical line t a n left parenthesis x over 2 plus fraction numerator 3 pi over denominator 8 end fraction right parenthesis vertical line plus c Which of the following is true

    I: integral subscript blank superscript blank fraction numerator 1 over denominator 3 plus 4 c o s x end fraction d x equals fraction numerator 1 over denominator square root of 7 end fraction l o g left square bracket fraction numerator square root of 7 plus t a n left parenthesis x divided by 2 right parenthesis over denominator square root of 7 minus t a n left parenthesis x divided by 2 right parenthesis end fraction right square bracket plus c
    II: integral subscript blank superscript blank fraction numerator d x over denominator c o s x minus s i n x end fraction equals fraction numerator 1 over denominator square root of 2 end fraction l o g vertical line t a n left parenthesis x over 2 plus fraction numerator 3 pi over denominator 8 end fraction right parenthesis vertical line plus c Which of the following is true

    Maths-General
    General
    Maths-

    I:not stretchy integral subscript blank superscript blank fraction numerator left parenthesis 1 plus x right parenthesis e to the power of x end exponent over denominator s e c to the power of 2 end exponent left parenthesis x e to the power of x end exponent right parenthesis end fraction d x equals blank l o g blank vertical line t a n fraction numerator x over denominator 2 end fraction vertical line plus s e c x plus C
    II:integral subscript blank superscript blank fraction numerator s e c x over denominator left parenthesis s e c x plus t a n x right parenthesis squared end fraction d x equals fraction numerator 1 over denominator 2 left parenthesis s e c x plus t a n x right parenthesis squared end fraction plus c Which of the following is true

    I:not stretchy integral subscript blank superscript blank fraction numerator left parenthesis 1 plus x right parenthesis e to the power of x end exponent over denominator s e c to the power of 2 end exponent left parenthesis x e to the power of x end exponent right parenthesis end fraction d x equals blank l o g blank vertical line t a n fraction numerator x over denominator 2 end fraction vertical line plus s e c x plus C
    II:integral subscript blank superscript blank fraction numerator s e c x over denominator left parenthesis s e c x plus t a n x right parenthesis squared end fraction d x equals fraction numerator 1 over denominator 2 left parenthesis s e c x plus t a n x right parenthesis squared end fraction plus c Which of the following is true

    Maths-General
    parallel
    General
    Maths-

    I:not stretchy integral subscript blank superscript blank fraction numerator 1 over denominator 1 plus c o s 2 x end fraction d x equals fraction numerator 1 over denominator 2 end fraction t a n x plus C
    IIcolon integral subscript blank superscript blank fraction numerator 1 plus s i n to the power of 2 subscript chi end exponent over denominator 1 plus c o s 2 x end fraction d x equals t a n x minus 1 half x plus c Which of the following is true

    I:not stretchy integral subscript blank superscript blank fraction numerator 1 over denominator 1 plus c o s 2 x end fraction d x equals fraction numerator 1 over denominator 2 end fraction t a n x plus C
    IIcolon integral subscript blank superscript blank fraction numerator 1 plus s i n to the power of 2 subscript chi end exponent over denominator 1 plus c o s 2 x end fraction d x equals t a n x minus 1 half x plus c Which of the following is true

    Maths-General
    General
    Chemistry-

    The probability density plots of 1s and 2s orbitals are given in figure

    The density of dots in region represents the probability density of finding electrons in the region. On the basis of above diagram which of the following statements is incor-rect?

    The probability density plots of 1s and 2s orbitals are given in figure

    The density of dots in region represents the probability density of finding electrons in the region. On the basis of above diagram which of the following statements is incor-rect?

    Chemistry-General
    General
    Physics-

    In the set up shown in Fig the two slits, S subscript 1 end subscriptand S subscript 2 end subscript are not equidistant from the slit S. The central fringe at O is then

    In the set up shown in Fig the two slits, S subscript 1 end subscriptand S subscript 2 end subscript are not equidistant from the slit S. The central fringe at O is then

    Physics-General
    parallel
    General
    Physics-

    In a Young’s double slit experimental arrangement shown here, if a mica sheet of thickness t and refractive index mu is placed in front of the slit S subscript 1 end subscript comma then the path difference left parenthesis S subscript 1 end subscript P minus S subscript 2 end subscript P right parenthesis

    In a Young’s double slit experimental arrangement shown here, if a mica sheet of thickness t and refractive index mu is placed in front of the slit S subscript 1 end subscript comma then the path difference left parenthesis S subscript 1 end subscript P minus S subscript 2 end subscript P right parenthesis

    Physics-General
    General
    Physics-

    Following figure shows sources S subscript 1 end subscript and S subscript 2 end subscript that emits light of wavelength lambda in all directions. The sources are exactly in phase and are separated by a distance equal to 1.5 lambda. If we start at the indicated start point and travel along path 1 and 2, the interference produce a maxima all along

    Following figure shows sources S subscript 1 end subscript and S subscript 2 end subscript that emits light of wavelength lambda in all directions. The sources are exactly in phase and are separated by a distance equal to 1.5 lambda. If we start at the indicated start point and travel along path 1 and 2, the interference produce a maxima all along

    Physics-General
    General
    Physics-

    Two coherent sources separated by distance d are radiating in phase having wavelength lambda. A detector moves in a big circle around the two sources in the plane of the two sources. The angular position of n = 4 interference maxima is given as

    Two coherent sources separated by distance d are radiating in phase having wavelength lambda. A detector moves in a big circle around the two sources in the plane of the two sources. The angular position of n = 4 interference maxima is given as

    Physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.