Biology
General
Easy

Question

Correct sequence in development is :

  1. Fertilization not stretchy rightwards arrowZygote not stretchy rightwards arrow Cleavage not stretchy rightwards arrow Morula not stretchy rightwards arrow Blastula not stretchy rightwards arrow Gastrula    
  2. Fertilization not stretchy rightwards arrow Zygote not stretchy rightwards arrow Blastula not stretchy rightwards arrow Morula  not stretchy rightwards arrowCleavage not stretchy rightwards arrow Gastrula    
  3. Fertilization not stretchy rightwards arrow Cleavage not stretchy rightwards arrow Morula not stretchy rightwards arrow Zygote not stretchy rightwards arrow Blastula not stretchy rightwards arrow Gastrula    
  4. Cleavage not stretchy rightwards arrow Zygote not stretchy rightwards arrow Fertilization not stretchy rightwards arrow Morula not stretchy rightwards arrow Blastula not stretchy rightwards arrow Gastrula    

The correct answer is: Fertilization not stretchy rightwards arrowZygote not stretchy rightwards arrow Cleavage not stretchy rightwards arrow Morula not stretchy rightwards arrow Blastula not stretchy rightwards arrow Gastrula

Related Questions to study

General
physics

To get a constant de voltage from the de unregulated output of a rectifier. We use

To get a constant de voltage from the de unregulated output of a rectifier. We use

physicsGeneral
General
physics

The emission of electrons from the host atoms due to the high electric field is known as...

The emission of electrons from the host atoms due to the high electric field is known as...

physicsGeneral
General
Maths-

If the tangent at the point open parentheses a t to the power of 2 end exponent comma a t to the power of 3 end exponent close parentheses on the curve a y to the power of 2 end exponent equals x to the power of 3 end exponent meets the curve again at

The given curve is ay2 = x3
The point of tangency is (at2, at3)
Let the point that tangent intersects again be (as2, as3)
We can find the slope of tangent by differentiating the given curve w.r.t x

2 a y fraction numerator d y over denominator d x end fraction equals 3 x squared
space space space space space fraction numerator d y over denominator d x end fraction equals fraction numerator 3 x squared over denominator 2 a y end fraction
T h e space s l o p e space i s space
m space equals space open parentheses fraction numerator d y over denominator d x end fraction close parentheses subscript left parenthesis a t squared comma space a t cubed right parenthesis end subscript
space space space space space space equals fraction numerator 3 left parenthesis a t squared right parenthesis squared over denominator 2 a left parenthesis a t cubed right parenthesis end fraction
space space space space space space equals fraction numerator 3 a squared t to the power of 4 over denominator 2 a squared t cubed end fraction
space space space m space space equals fraction numerator 3 t over denominator 2 end fraction
Now, we will use two point form to solve the question.
If (x1, y1) and (x2, y2) be two points on the line then the slope is
m equals fraction numerator y subscript 2 minus y subscript 1 over denominator x subscript 2 minus x subscript 1 end fraction
For this question, it will be
m equals fraction numerator a s cubed minus a t cubed over denominator a s squared minus a t squared end fraction
We will solve it further and find the value.
3 over 2 t equals fraction numerator a open parentheses s cubed minus t cubed close parentheses over denominator a open parentheses s squared minus t squared close parentheses end fraction
space space space space space space space equals fraction numerator left parenthesis s space minus space t right parenthesis left parenthesis s squared plus s t space plus t squared right parenthesis over denominator left parenthesis s space minus t right parenthesis left parenthesis s space plus t right parenthesis end fraction
space space space space space space space space space space space space space space space space space space... left curly bracket space left parenthesis a cubed space minus space b cubed space equals left parenthesis a space minus space b right parenthesis left parenthesis a squared space plus space a b space plus space b squared right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space a squared space minus space b squared space equals space left parenthesis a space minus space b right parenthesis left parenthesis a space plus space b right parenthesis space space space space right curly bracket
3 over 2 t equals fraction numerator s squared plus s t plus t squared over denominator s plus t end fraction
3 t left parenthesis s space plus space t right parenthesis space equals space 2 left parenthesis s squared space plus space s t space plus space t squared right parenthesis
space space 3 s t space plus 3 t squared space equals 2 s squared plus 2 s t space plus space 2 t squared
space space space space space space space space space space space space space 0 space equals space 2 s squared plus 2 s t space minus 3 s t space plus 2 t squared minus 3 t squared
2 s squared minus s t space minus t squared space equals space 0
W e space w i l l space u s e space f a c t o r i z a t i o n space m e t h o d.
2 s squared minus 2 s t space plus s t space minus t squared space equals space 0
2 s left parenthesis s space minus space t right parenthesis space plus space t left parenthesis s space minus t space right parenthesis space equals space 0
left parenthesis 2 s space plus space t right parenthesis left parenthesis s space minus space t right parenthesis space equals space 0
(s - t) = 0
s = t
It means the same point of tangency. We want to find different point.
(2s + t) = 0
s = negative t over 2
So, the point will be
open parentheses a s squared comma a s cubed close parentheses equals open parentheses a open parentheses negative t over 2 close parentheses squared comma a open parentheses fraction numerator negative t over denominator 2 end fraction close parentheses cubed close parentheses
space space space space space space space space space space space space space space space space space equals open parentheses fraction numerator a t squared over denominator 4 end fraction comma space fraction numerator negative a t cubed over denominator 8 end fraction close parentheses
space space space space space space space space space space space space
space space space space space space space
space space space space space space space space space space space space
This is the required answer.

If the tangent at the point open parentheses a t to the power of 2 end exponent comma a t to the power of 3 end exponent close parentheses on the curve a y to the power of 2 end exponent equals x to the power of 3 end exponent meets the curve again at

Maths-General
The given curve is ay2 = x3
The point of tangency is (at2, at3)
Let the point that tangent intersects again be (as2, as3)
We can find the slope of tangent by differentiating the given curve w.r.t x

2 a y fraction numerator d y over denominator d x end fraction equals 3 x squared
space space space space space fraction numerator d y over denominator d x end fraction equals fraction numerator 3 x squared over denominator 2 a y end fraction
T h e space s l o p e space i s space
m space equals space open parentheses fraction numerator d y over denominator d x end fraction close parentheses subscript left parenthesis a t squared comma space a t cubed right parenthesis end subscript
space space space space space space equals fraction numerator 3 left parenthesis a t squared right parenthesis squared over denominator 2 a left parenthesis a t cubed right parenthesis end fraction
space space space space space space equals fraction numerator 3 a squared t to the power of 4 over denominator 2 a squared t cubed end fraction
space space space m space space equals fraction numerator 3 t over denominator 2 end fraction
Now, we will use two point form to solve the question.
If (x1, y1) and (x2, y2) be two points on the line then the slope is
m equals fraction numerator y subscript 2 minus y subscript 1 over denominator x subscript 2 minus x subscript 1 end fraction
For this question, it will be
m equals fraction numerator a s cubed minus a t cubed over denominator a s squared minus a t squared end fraction
We will solve it further and find the value.
3 over 2 t equals fraction numerator a open parentheses s cubed minus t cubed close parentheses over denominator a open parentheses s squared minus t squared close parentheses end fraction
space space space space space space space equals fraction numerator left parenthesis s space minus space t right parenthesis left parenthesis s squared plus s t space plus t squared right parenthesis over denominator left parenthesis s space minus t right parenthesis left parenthesis s space plus t right parenthesis end fraction
space space space space space space space space space space space space space space space space space space... left curly bracket space left parenthesis a cubed space minus space b cubed space equals left parenthesis a space minus space b right parenthesis left parenthesis a squared space plus space a b space plus space b squared right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space a squared space minus space b squared space equals space left parenthesis a space minus space b right parenthesis left parenthesis a space plus space b right parenthesis space space space space right curly bracket
3 over 2 t equals fraction numerator s squared plus s t plus t squared over denominator s plus t end fraction
3 t left parenthesis s space plus space t right parenthesis space equals space 2 left parenthesis s squared space plus space s t space plus space t squared right parenthesis
space space 3 s t space plus 3 t squared space equals 2 s squared plus 2 s t space plus space 2 t squared
space space space space space space space space space space space space space 0 space equals space 2 s squared plus 2 s t space minus 3 s t space plus 2 t squared minus 3 t squared
2 s squared minus s t space minus t squared space equals space 0
W e space w i l l space u s e space f a c t o r i z a t i o n space m e t h o d.
2 s squared minus 2 s t space plus s t space minus t squared space equals space 0
2 s left parenthesis s space minus space t right parenthesis space plus space t left parenthesis s space minus t space right parenthesis space equals space 0
left parenthesis 2 s space plus space t right parenthesis left parenthesis s space minus space t right parenthesis space equals space 0
(s - t) = 0
s = t
It means the same point of tangency. We want to find different point.
(2s + t) = 0
s = negative t over 2
So, the point will be
open parentheses a s squared comma a s cubed close parentheses equals open parentheses a open parentheses negative t over 2 close parentheses squared comma a open parentheses fraction numerator negative t over denominator 2 end fraction close parentheses cubed close parentheses
space space space space space space space space space space space space space space space space space equals open parentheses fraction numerator a t squared over denominator 4 end fraction comma space fraction numerator negative a t cubed over denominator 8 end fraction close parentheses
space space space space space space space space space space space space
space space space space space space space
space space space space space space space space space space space space
This is the required answer.
parallel
General
physics

The Zenner voltage of a Zenner diode is kept at a desired value by........

The Zenner voltage of a Zenner diode is kept at a desired value by........

physicsGeneral
General
Maths-

The curves a x squared plus b y squared equals 1 and A x to the power of 2 end exponent plus B y to the power of 2 end exponent equals 1 intersect orthogonally, then

The curves are as follows:
ax2 + by2 = 1            ...(1)
Ax2 + By2 = 1          ...(2)        
We will take the derivative of equation (1) w.r.t x.
2ax + 2byfraction numerator d y over denominator d x end fraction=0
2byfraction numerator d y over denominator d x end fraction= -2ax
fraction numerator d y over denominator d x end fraction equals fraction numerator negative 2 a x over denominator 2 b y end fraction
This is this slope of first curve. We will call it slope1.
In the same way we will take the derivative of equation (2) w.r.t x 
2Ax + 2Byfraction numerator d y over denominator d x end fraction = 1
fraction numerator d y over denominator d x end fraction equals fraction numerator negative 2 A x over denominator 2 B y end fraction
We will call it slope2.
The two curves are orthogonal. So, the product of their slope is -1.
Slope1 × Slope2 = -1
fraction numerator negative 2 a x over denominator 2 b y end fraction cross times fraction numerator negative 2 A x over denominator 2 B y end fraction space equals space minus 1
fraction numerator a A x squared over denominator b B y squared end fraction equals negative 1
space a A x squared space equals space minus b B y squared
space space a x squared space equals fraction numerator negative b B y squared over denominator A end fraction space space space space space space... left parenthesis 3 right parenthesis
space space A x squared space equals space fraction numerator negative b B y squared over denominator a end fraction space space space space... left parenthesis 4 right parenthesis
We will substitute (3) in (1)
fraction numerator negative b B over denominator A end fraction y squared plus b y squared equals 1
left parenthesis space fraction numerator negative b B over denominator A end fraction plus b right parenthesis y squared space equals space 1 space space space space space space... left parenthesis 5 right parenthesis
We will substitute (4) in (2)
fraction numerator negative b B over denominator a end fraction y squared plus B y squared equals 1
left parenthesis fraction numerator negative b B over denominator a end fraction plus B right parenthesis y squared space equals space 1 space space space space space space space space space space... left parenthesis 6 right parenthesis
Divide (5) by (6) 
fraction numerator begin display style fraction numerator negative b B over denominator A end fraction end style plus b over denominator negative begin display style fraction numerator b B over denominator a end fraction end style plus B end fraction space equals space 1
fraction numerator negative b B over denominator A end fraction plus b space equals space fraction numerator negative b B over denominator a end fraction space plus space B
space space D i v i d e space a l l space t h e space s i d e s space b y space B b
space space space space space fraction numerator negative 1 over denominator A end fraction plus 1 over B space equals space fraction numerator negative 1 over denominator a end fraction plus 1 over b
space space space space space space space 1 over a minus 1 over A space equals 1 over b minus 1 over B
This is the required answer.
 
 
 
.    

The curves a x squared plus b y squared equals 1 and A x to the power of 2 end exponent plus B y to the power of 2 end exponent equals 1 intersect orthogonally, then

Maths-General
The curves are as follows:
ax2 + by2 = 1            ...(1)
Ax2 + By2 = 1          ...(2)        
We will take the derivative of equation (1) w.r.t x.
2ax + 2byfraction numerator d y over denominator d x end fraction=0
2byfraction numerator d y over denominator d x end fraction= -2ax
fraction numerator d y over denominator d x end fraction equals fraction numerator negative 2 a x over denominator 2 b y end fraction
This is this slope of first curve. We will call it slope1.
In the same way we will take the derivative of equation (2) w.r.t x 
2Ax + 2Byfraction numerator d y over denominator d x end fraction = 1
fraction numerator d y over denominator d x end fraction equals fraction numerator negative 2 A x over denominator 2 B y end fraction
We will call it slope2.
The two curves are orthogonal. So, the product of their slope is -1.
Slope1 × Slope2 = -1
fraction numerator negative 2 a x over denominator 2 b y end fraction cross times fraction numerator negative 2 A x over denominator 2 B y end fraction space equals space minus 1
fraction numerator a A x squared over denominator b B y squared end fraction equals negative 1
space a A x squared space equals space minus b B y squared
space space a x squared space equals fraction numerator negative b B y squared over denominator A end fraction space space space space space space... left parenthesis 3 right parenthesis
space space A x squared space equals space fraction numerator negative b B y squared over denominator a end fraction space space space space... left parenthesis 4 right parenthesis
We will substitute (3) in (1)
fraction numerator negative b B over denominator A end fraction y squared plus b y squared equals 1
left parenthesis space fraction numerator negative b B over denominator A end fraction plus b right parenthesis y squared space equals space 1 space space space space space space... left parenthesis 5 right parenthesis
We will substitute (4) in (2)
fraction numerator negative b B over denominator a end fraction y squared plus B y squared equals 1
left parenthesis fraction numerator negative b B over denominator a end fraction plus B right parenthesis y squared space equals space 1 space space space space space space space space space space... left parenthesis 6 right parenthesis
Divide (5) by (6) 
fraction numerator begin display style fraction numerator negative b B over denominator A end fraction end style plus b over denominator negative begin display style fraction numerator b B over denominator a end fraction end style plus B end fraction space equals space 1
fraction numerator negative b B over denominator A end fraction plus b space equals space fraction numerator negative b B over denominator a end fraction space plus space B
space space D i v i d e space a l l space t h e space s i d e s space b y space B b
space space space space space fraction numerator negative 1 over denominator A end fraction plus 1 over B space equals space fraction numerator negative 1 over denominator a end fraction plus 1 over b
space space space space space space space 1 over a minus 1 over A space equals 1 over b minus 1 over B
This is the required answer.
 
 
 
.    
General
physics

In the Zenner diode, at  VZ, the breakdown voltage......

In the Zenner diode, at  VZ, the breakdown voltage......

physicsGeneral
parallel
General
biology

Just before fertilization the diploid structure in the ovule of Capsella is -

Just before fertilization the diploid structure in the ovule of Capsella is -

biologyGeneral
General
biology

Obturators which help in fertilization are out growth of -

Obturators which help in fertilization are out growth of -

biologyGeneral
General
biology

Caruncle is formed by -

Caruncle is formed by -

biologyGeneral
parallel
General
biology

Proliferation of integumentary cells at the micropylar region of the ovule in castor develops -

Proliferation of integumentary cells at the micropylar region of the ovule in castor develops -

biologyGeneral
General
biology

Ovule in angiosperm is technically equivalent to -

Ovule in angiosperm is technically equivalent to -

biologyGeneral
General
biology

Crassinucellate ovule shows -

Crassinucellate ovule shows -

biologyGeneral
parallel
General
biology

The functional megaspore in Capsella is always -

The functional megaspore in Capsella is always -

biologyGeneral
General
biology

What type of ovule found in Capsella

What type of ovule found in Capsella

biologyGeneral
General
biology

A polygonum type of embryosac is -

A polygonum type of embryosac is -

biologyGeneral
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.