General
Easy
Maths-

Integrating factor of the differential equation cos space x fraction numerator d y over denominator d x end fraction plus y sin space x equals 1 is

Maths-General

  1. tan x
  2. cos space x
  3. sin x
  4. sec x

    Answer:The correct answer is: sec x

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    physics-

    The equivalent capacitance of the combination of the capacitors is

    The 10mu F and 6mu F capacitors are connected in parallel, hence resultant capacitance is
    C to the power of ´ end exponent equals 10 blank mu F plus 6 blank mu F equals 16 blank mu F blank
    This is connected in series with 4mu F blankcapacitor, hence effective capacitance is
    fraction numerator 1 over denominator C ´ ´ end fraction equals fraction numerator 1 over denominator 16 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 20 over denominator 16 cross times 4 end fraction
    rightwards double arrow blank C to the power of ´ ´ end exponent equals fraction numerator 64 over denominator 20 end fraction equals 3.20 mu F

    The equivalent capacitance of the combination of the capacitors is

    physics-General
    The 10mu F and 6mu F capacitors are connected in parallel, hence resultant capacitance is
    C to the power of ´ end exponent equals 10 blank mu F plus 6 blank mu F equals 16 blank mu F blank
    This is connected in series with 4mu F blankcapacitor, hence effective capacitance is
    fraction numerator 1 over denominator C ´ ´ end fraction equals fraction numerator 1 over denominator 16 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 20 over denominator 16 cross times 4 end fraction
    rightwards double arrow blank C to the power of ´ ´ end exponent equals fraction numerator 64 over denominator 20 end fraction equals 3.20 mu F
    General
    physics-

    A lead shot of diameter 1mm falls through a long column of glycerine The variation of the velocity ‘v’ with distance covered (s) is represented by

    A lead shot of diameter 1mm falls through a long column of glycerine The variation of the velocity ‘v’ with distance covered (s) is represented by

    physics-General
    General
    physics-

    Four plates of equal area A are separated by equal distance d and are arranged as shown in the figure. The equivalent capacity is

    The given circuit is equivalent to a parallel combination of two identical capacitors.

    Hence, equivalent capacitance between points A a n d blank B is
    C equals fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction plus fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction equals fraction numerator 2 epsilon subscript 0 end subscript A over denominator d end fraction

    Four plates of equal area A are separated by equal distance d and are arranged as shown in the figure. The equivalent capacity is

    physics-General
    The given circuit is equivalent to a parallel combination of two identical capacitors.

    Hence, equivalent capacitance between points A a n d blank B is
    C equals fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction plus fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction equals fraction numerator 2 epsilon subscript 0 end subscript A over denominator d end fraction
    General
    physics-

    If a cooling curve is drawn taking t(s) along X-axis and temperature (q) along Y-axis, it appears as

    If a cooling curve is drawn taking t(s) along X-axis and temperature (q) along Y-axis, it appears as

    physics-General
    General
    maths-

    Solution of differential equation xdy – ydx = 0 represents

    Solution of differential equation xdy – ydx = 0 represents

    maths-General
    General
    physics-

    Two parallel plates of area A are separated by two different dielectric as shown in figure. The net capacitance is

    C equals fraction numerator epsilon subscript 0 end subscript A over denominator fraction numerator d subscript 1 end subscript over denominator K subscript 1 end subscript end fraction plus fraction numerator d subscript 2 end subscript over denominator K subscript 2 end subscript end fraction end fraction
    equals blank fraction numerator epsilon subscript 0 end subscript A over denominator fraction numerator d over denominator 2 end fraction open parentheses fraction numerator 1 over denominator 1 end fraction plus fraction numerator 1 over denominator 2 end fraction close parentheses end fraction equals fraction numerator 4 epsilon subscript 0 end subscript A over denominator 3 d end fraction

    Two parallel plates of area A are separated by two different dielectric as shown in figure. The net capacitance is

    physics-General
    C equals fraction numerator epsilon subscript 0 end subscript A over denominator fraction numerator d subscript 1 end subscript over denominator K subscript 1 end subscript end fraction plus fraction numerator d subscript 2 end subscript over denominator K subscript 2 end subscript end fraction end fraction
    equals blank fraction numerator epsilon subscript 0 end subscript A over denominator fraction numerator d over denominator 2 end fraction open parentheses fraction numerator 1 over denominator 1 end fraction plus fraction numerator 1 over denominator 2 end fraction close parentheses end fraction equals fraction numerator 4 epsilon subscript 0 end subscript A over denominator 3 d end fraction
    General
    physics-

    A network of six identical capacitors, each of valueC, is made as shown in the figure.
    The equivalent capacitance between the points A space a n d blank B is

    In the given circuit capacitor’s (1) (2) and (3) are connected in series, hence equivalent capacitance is

    fraction numerator 1 over denominator C to the power of ´ ´ end exponent end fraction equals fraction numerator 1 over denominator C end fraction plus fraction numerator 1 over denominator C end fraction plus fraction numerator 1 over denominator C end fraction equals fraction numerator 3 over denominator C end fraction
    rightwards double arrow C to the power of ´ ´ end exponent equals fraction numerator C over denominator 3 end fraction
    This is connected in parallel with (4).
    therefore blank C to the power of ´ ´ ´ ´ end exponent equals C to the power of ´ ´ end exponent plus C equals fraction numerator C over denominator 3 end fraction plus C equals fraction numerator 4 C over denominator 3 end fraction
    The three capacitor’s (5),fraction numerator 4 C over denominator 3 end fraction comma (6) are now connected in series.
    therefore Equivalent capacitance is
    fraction numerator 1 over denominator C blank ´ ´ ´ ´ ´ ´ end fraction equals fraction numerator 1 over denominator C end fraction plus fraction numerator 3 over denominator 4 C end fraction plus fraction numerator 1 over denominator C end fraction
    fraction numerator 1 over denominator C ´ ´ ´ ´ ´ ´ end fraction equals fraction numerator 11 over denominator 4 C end fraction
    rightwards double arrow blank C to the power of ´ ´ ´ ´ ´ ´ end exponent equals fraction numerator 4 C over denominator 11 end fraction

    A network of six identical capacitors, each of valueC, is made as shown in the figure.
    The equivalent capacitance between the points A space a n d blank B is

    physics-General
    In the given circuit capacitor’s (1) (2) and (3) are connected in series, hence equivalent capacitance is

    fraction numerator 1 over denominator C to the power of ´ ´ end exponent end fraction equals fraction numerator 1 over denominator C end fraction plus fraction numerator 1 over denominator C end fraction plus fraction numerator 1 over denominator C end fraction equals fraction numerator 3 over denominator C end fraction
    rightwards double arrow C to the power of ´ ´ end exponent equals fraction numerator C over denominator 3 end fraction
    This is connected in parallel with (4).
    therefore blank C to the power of ´ ´ ´ ´ end exponent equals C to the power of ´ ´ end exponent plus C equals fraction numerator C over denominator 3 end fraction plus C equals fraction numerator 4 C over denominator 3 end fraction
    The three capacitor’s (5),fraction numerator 4 C over denominator 3 end fraction comma (6) are now connected in series.
    therefore Equivalent capacitance is
    fraction numerator 1 over denominator C blank ´ ´ ´ ´ ´ ´ end fraction equals fraction numerator 1 over denominator C end fraction plus fraction numerator 3 over denominator 4 C end fraction plus fraction numerator 1 over denominator C end fraction
    fraction numerator 1 over denominator C ´ ´ ´ ´ ´ ´ end fraction equals fraction numerator 11 over denominator 4 C end fraction
    rightwards double arrow blank C to the power of ´ ´ ´ ´ ´ ´ end exponent equals fraction numerator 4 C over denominator 11 end fraction
    General
    physics-

    The equivalent capacitance between the points A a n d B in the following circuit is

    The two capacitors each of value 1.5mu F are in parallel. So, their equivalent capacitance

    Now, three capacitors each of value 3 mu F are in series. Hence, their equivalent capacitance is given by
    fraction numerator 1 over denominator C end fraction equals fraction numerator 1 over denominator 3 end fraction plus fraction numerator 1 over denominator 3 end fraction plus fraction numerator 1 over denominator 3 end fraction
    or fraction numerator 1 over denominator C end fraction blank equals fraction numerator 3 over denominator 3 end fraction
    or c equals 1 mu F

    The equivalent capacitance between the points A a n d B in the following circuit is

    physics-General
    The two capacitors each of value 1.5mu F are in parallel. So, their equivalent capacitance

    Now, three capacitors each of value 3 mu F are in series. Hence, their equivalent capacitance is given by
    fraction numerator 1 over denominator C end fraction equals fraction numerator 1 over denominator 3 end fraction plus fraction numerator 1 over denominator 3 end fraction plus fraction numerator 1 over denominator 3 end fraction
    or fraction numerator 1 over denominator C end fraction blank equals fraction numerator 3 over denominator 3 end fraction
    or c equals 1 mu F
    General
    maths-

    Solution of differential equation fraction numerator d y over denominator d x end fraction plus a y equals e to the power of m x end exponent is

    Solution of differential equation fraction numerator d y over denominator d x end fraction plus a y equals e to the power of m x end exponent is

    maths-General
    General
    physics-

    The equivalent capacitance of the combination shown in figure below is

    The three capacitors are in parallel hence, their equivalent capacitance equals 3 C

    The equivalent capacitance of the combination shown in figure below is

    physics-General
    The three capacitors are in parallel hence, their equivalent capacitance equals 3 C
    General
    physics-

    A capacitor of capacitance 1 blank mu F is filled with two dielectrics of dielectric constant 4 and 6. What is the new capacitance?

    Initially, the capacitance of capacitor

    C equals fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction
    therefore blank fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction equals 1 mu F …(i)
    When it is filled with dielectric of dielectric constant K subscript 1 end subscript a n d blank K subscript 2 end subscript as shown, then there are two capacitors connected is parallel. So,
    C to the power of ´ ´ end exponent equals fraction numerator K subscript 1 end subscript epsilon subscript 0 end subscript open parentheses fraction numerator A over denominator 2 end fraction close parentheses over denominator d end fraction plus fraction numerator K subscript 2 end subscript epsilon subscript 0 end subscript open parentheses fraction numerator A over denominator 2 end fraction close parentheses over denominator d end fraction
    (as area becomes half)
    C ´ ´ blank equals fraction numerator 4 epsilon subscript 0 end subscript A over denominator 2 d end fraction plus fraction numerator 6 epsilon subscript 0 end subscript A over denominator 2 d end fraction equals fraction numerator 2 epsilon subscript 0 end subscript A over denominator d end fraction plus fraction numerator 3 epsilon subscript 0 end subscript A over denominator d end fraction
    Using Eq. (i), we obtain
    C to the power of ´ ´ end exponent equals blank 2 cross times 1 plus 3 cross times 1 equals 5 blank mu F

    A capacitor of capacitance 1 blank mu F is filled with two dielectrics of dielectric constant 4 and 6. What is the new capacitance?

    physics-General
    Initially, the capacitance of capacitor

    C equals fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction
    therefore blank fraction numerator epsilon subscript 0 end subscript A over denominator d end fraction equals 1 mu F …(i)
    When it is filled with dielectric of dielectric constant K subscript 1 end subscript a n d blank K subscript 2 end subscript as shown, then there are two capacitors connected is parallel. So,
    C to the power of ´ ´ end exponent equals fraction numerator K subscript 1 end subscript epsilon subscript 0 end subscript open parentheses fraction numerator A over denominator 2 end fraction close parentheses over denominator d end fraction plus fraction numerator K subscript 2 end subscript epsilon subscript 0 end subscript open parentheses fraction numerator A over denominator 2 end fraction close parentheses over denominator d end fraction
    (as area becomes half)
    C ´ ´ blank equals fraction numerator 4 epsilon subscript 0 end subscript A over denominator 2 d end fraction plus fraction numerator 6 epsilon subscript 0 end subscript A over denominator 2 d end fraction equals fraction numerator 2 epsilon subscript 0 end subscript A over denominator d end fraction plus fraction numerator 3 epsilon subscript 0 end subscript A over denominator d end fraction
    Using Eq. (i), we obtain
    C to the power of ´ ´ end exponent equals blank 2 cross times 1 plus 3 cross times 1 equals 5 blank mu F
    General
    physics-

    In the given network, the value of C, so that an equivalent capacitance between A and B i s blank 3 mu F comma is

    3 equals fraction numerator fraction numerator 16 over denominator 5 end fraction C over denominator fraction numerator 16 over denominator 5 end fraction plus C end fraction
    Or C equals 48 mu F

    In the given network, the value of C, so that an equivalent capacitance between A and B i s blank 3 mu F comma is

    physics-General
    3 equals fraction numerator fraction numerator 16 over denominator 5 end fraction C over denominator fraction numerator 16 over denominator 5 end fraction plus C end fraction
    Or C equals 48 mu F
    General
    physics-

    The total energy stored in the condenser system shown in the figure will be

    6blank mu F and 3blank mu F capacitors are in series
    fraction numerator 1 over denominator C subscript 1 end subscript end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 3 end fraction
    C subscript 1 end subscript equals 2
    C subscript 1 end subscript i s blank p a r a l l e l blank t o blank 2 blank mu F blank c a p a c i t o r
    therefore blank C subscript e q end subscript equals 2 plus 2 equals 4 mu F blank
    Total energy, U equals fraction numerator 1 over denominator 2 end fraction C V to the power of 2 end exponent
    equals fraction numerator 1 over denominator 2 end fraction cross times 4 cross times open parentheses 2 close parentheses to the power of 2 end exponent equals 8 mu J

    The total energy stored in the condenser system shown in the figure will be

    physics-General
    6blank mu F and 3blank mu F capacitors are in series
    fraction numerator 1 over denominator C subscript 1 end subscript end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 3 end fraction
    C subscript 1 end subscript equals 2
    C subscript 1 end subscript i s blank p a r a l l e l blank t o blank 2 blank mu F blank c a p a c i t o r
    therefore blank C subscript e q end subscript equals 2 plus 2 equals 4 mu F blank
    Total energy, U equals fraction numerator 1 over denominator 2 end fraction C V to the power of 2 end exponent
    equals fraction numerator 1 over denominator 2 end fraction cross times 4 cross times open parentheses 2 close parentheses to the power of 2 end exponent equals 8 mu J
    General
    physics-

    Effective capacitance between points A a n d blank B in the figure, shown is

    The points C a n d blank D will be at same potentials since,fraction numerator 3 over denominator 6 end fraction equals fraction numerator 4 over denominator 8 end fraction.
    Therefore, capacitance of 2mu F will be unaffected.
    So, the equivalent circuit can be shown as.

    The effective capacitance in upper arm in series, is given by
    C subscript 1 end subscript equals fraction numerator 3 cross times 6 over denominator 3 plus 6 end fraction equals fraction numerator 18 over denominator 9 end fraction equals 2 blank mu F
    The effective capacitance in lower arm in series is given by
    C subscript 2 end subscript equals blank fraction numerator 4 cross times 8 over denominator 4 plus 8 end fraction equals fraction numerator 32 over denominator 12 end fraction equals fraction numerator 8 over denominator 3 end fraction mu F
    Hence, the resultant capacitance in parallel is given by
    C equals C subscript 1 end subscript plus C subscript 2 end subscript equals 2 plus fraction numerator 8 over denominator 3 end fraction equals fraction numerator 14 over denominator 3 end fraction mu F

    Effective capacitance between points A a n d blank B in the figure, shown is

    physics-General
    The points C a n d blank D will be at same potentials since,fraction numerator 3 over denominator 6 end fraction equals fraction numerator 4 over denominator 8 end fraction.
    Therefore, capacitance of 2mu F will be unaffected.
    So, the equivalent circuit can be shown as.

    The effective capacitance in upper arm in series, is given by
    C subscript 1 end subscript equals fraction numerator 3 cross times 6 over denominator 3 plus 6 end fraction equals fraction numerator 18 over denominator 9 end fraction equals 2 blank mu F
    The effective capacitance in lower arm in series is given by
    C subscript 2 end subscript equals blank fraction numerator 4 cross times 8 over denominator 4 plus 8 end fraction equals fraction numerator 32 over denominator 12 end fraction equals fraction numerator 8 over denominator 3 end fraction mu F
    Hence, the resultant capacitance in parallel is given by
    C equals C subscript 1 end subscript plus C subscript 2 end subscript equals 2 plus fraction numerator 8 over denominator 3 end fraction equals fraction numerator 14 over denominator 3 end fraction mu F
    General
    physics-

    Equivalent capacitance between A a n d B is


    The capacitors 2blank mu F and 2blank mu F of arm A C D are in series. So, their equivalent capacitance is 1blank mu F which is in parallel with capacitor of 1blank mu F of arm A D.
    So, equivalent capacitance now is 2blank mu F.
    This capacitance is now in series with 2blank mu F capacitance of arm B D which equivalents to 1blank mu F is in parallel with 1blank mu F capacitance of arm A B.
    So, final effective capacitance=2blank mu F.

    Equivalent capacitance between A a n d B is

    physics-General

    The capacitors 2blank mu F and 2blank mu F of arm A C D are in series. So, their equivalent capacitance is 1blank mu F which is in parallel with capacitor of 1blank mu F of arm A D.
    So, equivalent capacitance now is 2blank mu F.
    This capacitance is now in series with 2blank mu F capacitance of arm B D which equivalents to 1blank mu F is in parallel with 1blank mu F capacitance of arm A B.
    So, final effective capacitance=2blank mu F.