General
General
Easy

Question

Jenny wanted to make sure that she was well-rested, so she slept for 8 hours. If an hour has 60 minutes, what are the total minutes of sleep she has?

  1. 270
  2. 360
  3. 480
  4. 540

hintHint:

We are given the number of hours Jenny rested. It is 8 hours. There are 60 minutes in one hour. We have to find the time for which Jenny rested in minutes. We will do it by multiplying the number of hours by minutes for one hour.

The correct answer is: 480


    The number of hours Jenny rested is 8.
    1 hour = 60 minutes.
    We will find the time for which Jenny rested in minutes. To find the time, we will multiply the number of hours by 60 minutes.
    Time in minutes = Number of hours × 60 minutes
    = 8 × 60
    = 480 minutes
    Jenny rested for 480 minutes.

    For such questions, multiplication is used.

    Related Questions to study

    General
    Maths-

    lim for x not stretchy rightwards arrow pi divided by 2 of   fraction numerator open square brackets 1 minus tan invisible function application open parentheses x over 2 close parentheses close square brackets left square bracket 1 minus sin invisible function application x right square bracket over denominator open square brackets 1 plus tan invisible function application open parentheses x over 2 close parentheses close square brackets left square bracket pi minus 2 x right square bracket cubed end fraction is

    lim for x not stretchy rightwards arrow pi divided by 2 of   fraction numerator open square brackets 1 minus tan invisible function application open parentheses x over 2 close parentheses close square brackets left square bracket 1 minus sin invisible function application x right square bracket over denominator open square brackets 1 plus tan invisible function application open parentheses x over 2 close parentheses close square brackets left square bracket pi minus 2 x right square bracket cubed end fraction is

    Maths-General
    General
    Maths-

    Let f(A)=g(A)=k and their nth derivatives fn (A),gn (A) exist and are not equal for some n. Further ,if lim for x not stretchy rightwards arrow 2 of   fraction numerator f left parenthesis a right parenthesis g left parenthesis x right parenthesis minus f left parenthesis a right parenthesis minus g left parenthesis a right parenthesis f left parenthesis x right parenthesis plus g left parenthesis a right parenthesis over denominator g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis end fraction equals 4 then the value of k is-

    Let f(A)=g(A)=k and their nth derivatives fn (A),gn (A) exist and are not equal for some n. Further ,if lim for x not stretchy rightwards arrow 2 of   fraction numerator f left parenthesis a right parenthesis g left parenthesis x right parenthesis minus f left parenthesis a right parenthesis minus g left parenthesis a right parenthesis f left parenthesis x right parenthesis plus g left parenthesis a right parenthesis over denominator g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis end fraction equals 4 then the value of k is-

    Maths-General
    General
    Maths-

    If lim for x not stretchy rightwards arrow 0 of   fraction numerator log invisible function application left parenthesis 3 plus x right parenthesis minus log invisible function application left parenthesis 3 minus x right parenthesis over denominator x end fraction equals k, the value of k is-

    If lim for x not stretchy rightwards arrow 0 of   fraction numerator log invisible function application left parenthesis 3 plus x right parenthesis minus log invisible function application left parenthesis 3 minus x right parenthesis over denominator x end fraction equals k, the value of k is-

    Maths-General
    parallel
    General
    Maths-

    lim for m not stretchy rightwards arrow straight infinity of   fraction numerator log invisible function application x to the power of n minus left square bracket x right square bracket over denominator left square bracket x right square bracket end fraction comma n element of N, (where [x] denotes greatest integer less than or equal to

    lim for m not stretchy rightwards arrow straight infinity of   fraction numerator log invisible function application x to the power of n minus left square bracket x right square bracket over denominator left square bracket x right square bracket end fraction comma n element of N, (where [x] denotes greatest integer less than or equal to

    Maths-General
    General
    Maths-

    lim for x not stretchy rightwards arrow n of   open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 3 end fraction close parentheses to the power of x equals

    lim for x not stretchy rightwards arrow n of   open parentheses fraction numerator x squared plus 5 x plus 3 over denominator x squared plus x plus 3 end fraction close parentheses to the power of x equals

    Maths-General
    General
    Maths-

    The values of lim for x not stretchy rightwards arrow 0 of   fraction numerator left parenthesis 1 minus cos invisible function application 2 x right parenthesis sin invisible function application 5 x over denominator x squared sin invisible function application 3 x end fraction is

    The values of lim for x not stretchy rightwards arrow 0 of   fraction numerator left parenthesis 1 minus cos invisible function application 2 x right parenthesis sin invisible function application 5 x over denominator x squared sin invisible function application 3 x end fraction is

    Maths-General
    parallel
    General
    Maths-

    If f left parenthesis 1 right parenthesis equals 1 comma f left parenthesis 1 right parenthesis equals 2, then lim for x not stretchy rightwards arrow 1 of   fraction numerator square root of f left parenthesis x right parenthesis end root minus 1 over denominator square root of x minus 1 end fraction equals

    If f left parenthesis 1 right parenthesis equals 1 comma f left parenthesis 1 right parenthesis equals 2, then lim for x not stretchy rightwards arrow 1 of   fraction numerator square root of f left parenthesis x right parenthesis end root minus 1 over denominator square root of x minus 1 end fraction equals

    Maths-General
    General
    Maths-

    Statement- 1 lim for x not stretchy rightwards arrow straight infinity of   fraction numerator 2 x to the power of 4 plus 3 x cubed plus 7 x over denominator 3 x to the power of 4 plus 2 x squared plus 3 x end fraction equals 2 over 3
    Statement-II If P(x) and Q(x) are two polynomials with rational coefficients, then lim for x not stretchy rightwards arrow straight infinity of   fraction numerator p left parenthesis x right parenthesis over denominator Q left parenthesis x right parenthesis end fraction equals fraction numerator text  coefficient of highest power of  end text x text  in  end text P left parenthesis x right parenthesis over denominator text  coefficient of highest power of  end text x text  in  end text Q left parenthesis x right parenthesis end fraction

    Statement- 1 lim for x not stretchy rightwards arrow straight infinity of   fraction numerator 2 x to the power of 4 plus 3 x cubed plus 7 x over denominator 3 x to the power of 4 plus 2 x squared plus 3 x end fraction equals 2 over 3
    Statement-II If P(x) and Q(x) are two polynomials with rational coefficients, then lim for x not stretchy rightwards arrow straight infinity of   fraction numerator p left parenthesis x right parenthesis over denominator Q left parenthesis x right parenthesis end fraction equals fraction numerator text  coefficient of highest power of  end text x text  in  end text P left parenthesis x right parenthesis over denominator text  coefficient of highest power of  end text x text  in  end text Q left parenthesis x right parenthesis end fraction

    Maths-General
    General
    Maths-

    Statement - 1 lim for x not stretchy rightwards arrow 0 of   fraction numerator square root of fraction numerator 1 minus cos invisible function application 2 x over denominator 2 end fraction end root over denominator x end fraction does not exist.

    Statement-II lim for x not stretchy rightwards arrow pi over 2 of   fraction numerator sin invisible function application x minus left parenthesis sin invisible function application x right parenthesis to the power of ln invisible function application x end exponent over denominator 1 minus sin invisible function application x plus ell ln invisible function application sin invisible function application x end fraction equals 2

    Statement - 1 lim for x not stretchy rightwards arrow 0 of   fraction numerator square root of fraction numerator 1 minus cos invisible function application 2 x over denominator 2 end fraction end root over denominator x end fraction does not exist.

    Statement-II lim for x not stretchy rightwards arrow pi over 2 of   fraction numerator sin invisible function application x minus left parenthesis sin invisible function application x right parenthesis to the power of ln invisible function application x end exponent over denominator 1 minus sin invisible function application x plus ell ln invisible function application sin invisible function application x end fraction equals 2

    Maths-General
    parallel
    General
    Maths-

    Statement-I lim for x not stretchy rightwards arrow n of   fraction numerator x to the power of n plus n x to the power of 2 minus 1 end exponent plus 1 over denominator open square brackets x cubed close square brackets end fraction equals 0 comma n element of 1 (where [.] represents greatest integer function).
    Statement-II x minus 1 less than left square bracket x right square bracket less or equal than x, (where [.] represents greatest integer function).

    Statement-I lim for x not stretchy rightwards arrow n of   fraction numerator x to the power of n plus n x to the power of 2 minus 1 end exponent plus 1 over denominator open square brackets x cubed close square brackets end fraction equals 0 comma n element of 1 (where [.] represents greatest integer function).
    Statement-II x minus 1 less than left square bracket x right square bracket less or equal than x, (where [.] represents greatest integer function).

    Maths-General
    General
    Maths-

    lim for y not stretchy rightwards arrow 0 of   open parentheses lim for x not stretchy rightwards arrow straight infinity of   fraction numerator exp invisible function application open parentheses ln invisible function application open parentheses 1 plus fraction numerator a y over denominator x end fraction close parentheses close parentheses minus exp invisible function application open parentheses x ln invisible function application open parentheses 1 plus fraction numerator b y over denominator x end fraction close parentheses close parentheses over denominator y end fraction close parentheses is equal to

    lim for y not stretchy rightwards arrow 0 of   open parentheses lim for x not stretchy rightwards arrow straight infinity of   fraction numerator exp invisible function application open parentheses ln invisible function application open parentheses 1 plus fraction numerator a y over denominator x end fraction close parentheses close parentheses minus exp invisible function application open parentheses x ln invisible function application open parentheses 1 plus fraction numerator b y over denominator x end fraction close parentheses close parentheses over denominator y end fraction close parentheses is equal to

    Maths-General
    General
    Maths-

    lim for n not stretchy rightwards arrow straight infinity of   open parentheses fraction numerator 1 over denominator square root of n squared end root end fraction plus fraction numerator 1 over denominator square root of n squared plus 1 end root end fraction plus fraction numerator 1 over denominator square root of n squared plus 2 end root end fraction plus midline horizontal ellipsis horizontal ellipsis plus fraction numerator 1 over denominator square root of n squared plus 2 n end root end fraction close parentheses is equal to

    lim for n not stretchy rightwards arrow straight infinity of   open parentheses fraction numerator 1 over denominator square root of n squared end root end fraction plus fraction numerator 1 over denominator square root of n squared plus 1 end root end fraction plus fraction numerator 1 over denominator square root of n squared plus 2 end root end fraction plus midline horizontal ellipsis horizontal ellipsis plus fraction numerator 1 over denominator square root of n squared plus 2 n end root end fraction close parentheses is equal to

    Maths-General
    parallel
    General
    Maths-

    lim for x not stretchy rightwards arrow 0 of   open square brackets open parentheses 1 minus straight e to the power of x close parentheses fraction numerator sin invisible function application x over denominator vertical line x vertical line end fraction close square brackets, where [ [] represents greatest integer function, is equal to

    lim for x not stretchy rightwards arrow 0 of   open square brackets open parentheses 1 minus straight e to the power of x close parentheses fraction numerator sin invisible function application x over denominator vertical line x vertical line end fraction close square brackets, where [ [] represents greatest integer function, is equal to

    Maths-General
    General
    Maths-

    If α and β be the roots of equation ax2+bx+c=0, then lim for x not stretchy rightwards arrow a of   open parentheses 1 plus a x squared plus b x plus c close parentheses to the power of fraction numerator 1 over denominator x minus a end fraction end exponent is equal to

    If α and β be the roots of equation ax2+bx+c=0, then lim for x not stretchy rightwards arrow a of   open parentheses 1 plus a x squared plus b x plus c close parentheses to the power of fraction numerator 1 over denominator x minus a end fraction end exponent is equal to

    Maths-General
    General
    Maths-

    lim for x not stretchy rightwards arrow 0 of   fraction numerator sin to the power of negative 1 end exponent invisible function application x minus tan to the power of negative 1 end exponent invisible function application x over denominator x cubed end fraction is equal to

    lim for x not stretchy rightwards arrow 0 of   fraction numerator sin to the power of negative 1 end exponent invisible function application x minus tan to the power of negative 1 end exponent invisible function application x over denominator x cubed end fraction is equal to

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.