General
Easy
Maths-

Given that logpx = α and logqx = β, then value of logp/q x equals-

Maths-General

  1. fraction numerator alpha beta over denominator beta minus alpha end fraction    
  2. fraction numerator alpha minus beta over denominator alpha beta end fraction    
  3. fraction numerator beta minus alpha over denominator alpha beta end fraction    
  4. fraction numerator alpha beta over denominator alpha minus beta end fraction    

    Answer:The correct answer is: fraction numerator alpha beta over denominator beta minus alpha end fraction

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    maths-

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    maths-General
    General
    maths-

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    maths-General
    General
    maths-

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    maths-General
    General
    maths-

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
    = log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    maths-General
    log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
    = log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1
    General
    maths-

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

     f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 right parenthesis end fraction
    stack l i m with x rightwards arrow 0 below f'(x)
    stack l i m with x rightwards arrow 0 below fraction numerator open parentheses fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses x to the power of 1 divided by 3 end exponent open square brackets fraction numerator cos invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction close square brackets left parenthesis 3 x right parenthesis over denominator open parentheses fraction numerator tan to the power of – 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent. x. open parentheses fraction numerator e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses. x to the power of 1 divided by 3 end exponent end fraction
    = 3

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

    maths-General
     f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 right parenthesis end fraction
    stack l i m with x rightwards arrow 0 below f'(x)
    stack l i m with x rightwards arrow 0 below fraction numerator open parentheses fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses x to the power of 1 divided by 3 end exponent open square brackets fraction numerator cos invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction close square brackets left parenthesis 3 x right parenthesis over denominator open parentheses fraction numerator tan to the power of – 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent. x. open parentheses fraction numerator e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses. x to the power of 1 divided by 3 end exponent end fraction
    = 3
    General
    maths-

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

    f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis d x over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
    stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis = fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
    = fraction numerator x to the power of 1 divided by 3 end exponent fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction. fraction numerator log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction.3 x over denominator x. open parentheses fraction numerator tan to the power of negative 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent open parentheses fraction numerator e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 over denominator 5 x to the power of 1 divided by 3 end exponent end fraction close parentheses.5 x to the power of 1 divided by 3 end exponent end fraction
    = fraction numerator 1.1.3 over denominator 1.1.5 end fraction equals 3/5

    If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

    maths-General
    f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis d x over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
    stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis = fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
    = fraction numerator x to the power of 1 divided by 3 end exponent fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction. fraction numerator log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction.3 x over denominator x. open parentheses fraction numerator tan to the power of negative 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent open parentheses fraction numerator e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 over denominator 5 x to the power of 1 divided by 3 end exponent end fraction close parentheses.5 x to the power of 1 divided by 3 end exponent end fraction
    = fraction numerator 1.1.3 over denominator 1.1.5 end fraction equals 3/5
    General
    maths-

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    maths-General
    General
    maths-

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    maths-General
    General
    maths-

    If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

    If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

    maths-General
    General
    maths-

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    maths-General
    General
    maths-

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    maths-General
    General
    maths-

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    maths-General
    General
    maths-

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    maths-General
    General
    maths-

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    maths-General
    General
    maths-

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    maths-General