General
Easy
Maths-

How to define Wavy Curve Method f(x)?

Maths-General

  1. open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......open parentheses x minus a subscript 1 close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......open parentheses x minus b subscript p close parentheses to the power of m p end exponent
  2. open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent minus open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent minus open parentheses x minus a subscript 3 close parentheses to the power of n minus end exponent.....negative open parentheses x minus a subscript k close parentheses to the power of n k divided by 2 end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent minus open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent minus open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent.....negative open parentheses x minus b subscript p close parentheses to the power of m p end exponent
  3. open parentheses x minus a subscript 1 close parentheses to the power of n plus 1 end exponent plus open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent plus open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent.......plus open parentheses x minus a subscript k close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent plus open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent plus open parentheses x minus b subscript 3 close parentheses to the power of n 3 end exponent......plus open parentheses x minus b subscript p close parentheses to the power of m p end exponent
  4. open parentheses x minus a subscript 1 close parentheses to the power of n minus 1 end exponent divided by open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent divided by open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......divided by open parentheses x minus a subscript k close parentheses to the power of n k asterisk times end exponent open parentheses x minus b subscript 1 close parentheses to the power of m minus 1 end exponent divided by open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent divided by open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......divided by open parentheses x minus b subscript 2 close parentheses to the power of m p end exponent

    Answer:The correct answer is: open parentheses x minus a subscript 1 close parentheses to the power of n 1 end exponent open parentheses x minus a subscript 2 close parentheses to the power of n 2 end exponent open parentheses x minus a subscript 3 close parentheses to the power of n 3 end exponent......open parentheses x minus a subscript 1 close parentheses to the power of n k end exponent divided by open parentheses x minus b subscript 1 close parentheses to the power of m 1 end exponent open parentheses x minus b subscript 2 close parentheses to the power of m 2 end exponent open parentheses x minus b subscript 3 close parentheses to the power of m 3 end exponent......open parentheses x minus b subscript p close parentheses to the power of m p end exponent

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    physics-

    Two metal cubes A and B of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of A and B are 300 W divided by m ℃ and 200 W divided by m ℃, respectively. After steady state is reached, the temperature of the interface will be

    Temperature of interface T equals fraction numerator K subscript 1 end subscript theta subscript 1 end subscript plus K subscript 2 end subscript theta subscript 2 end subscript over denominator K subscript 1 end subscript plus K subscript 2 end subscript end fraction
    equals fraction numerator 300 cross times 100 plus 200 cross times 0 over denominator 300 plus 200 end fraction equals 60 ℃

    Two metal cubes A and B of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of A and B are 300 W divided by m ℃ and 200 W divided by m ℃, respectively. After steady state is reached, the temperature of the interface will be

    physics-General
    Temperature of interface T equals fraction numerator K subscript 1 end subscript theta subscript 1 end subscript plus K subscript 2 end subscript theta subscript 2 end subscript over denominator K subscript 1 end subscript plus K subscript 2 end subscript end fraction
    equals fraction numerator 300 cross times 100 plus 200 cross times 0 over denominator 300 plus 200 end fraction equals 60 ℃
    General
    physics-

    The coefficient of thermal conductivity of copper is 9 times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?

    Temperature of interface
    theta equals fraction numerator K subscript 1 end subscript theta subscript 1 end subscript l subscript 2 end subscript plus K subscript 2 end subscript theta subscript 2 end subscript l subscript 1 end subscript over denominator K subscript 1 end subscript l subscript 2 end subscript plus K subscript 2 end subscript l subscript 1 end subscript end fraction
    It is given that K subscript C u end subscript equals 9 K subscript s end subscript. So, if K subscript s end subscript equals K subscript 1 end subscript equals K, then
    K subscript C u end subscript equals K subscript 2 end subscript equals 9 K
    rightwards double arrow theta equals fraction numerator 9 K cross times 100 cross times 6 plus K cross times 0 cross times 18 over denominator 9 K cross times 6 plus K cross times 18 end fraction
    equals fraction numerator 5400 K over denominator 72 K end fraction equals 75 ℃

    The coefficient of thermal conductivity of copper is 9 times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?

    physics-General
    Temperature of interface
    theta equals fraction numerator K subscript 1 end subscript theta subscript 1 end subscript l subscript 2 end subscript plus K subscript 2 end subscript theta subscript 2 end subscript l subscript 1 end subscript over denominator K subscript 1 end subscript l subscript 2 end subscript plus K subscript 2 end subscript l subscript 1 end subscript end fraction
    It is given that K subscript C u end subscript equals 9 K subscript s end subscript. So, if K subscript s end subscript equals K subscript 1 end subscript equals K, then
    K subscript C u end subscript equals K subscript 2 end subscript equals 9 K
    rightwards double arrow theta equals fraction numerator 9 K cross times 100 cross times 6 plus K cross times 0 cross times 18 over denominator 9 K cross times 6 plus K cross times 18 end fraction
    equals fraction numerator 5400 K over denominator 72 K end fraction equals 75 ℃
    General
    maths-

    Which of the following statement is correct?

    Which of the following statement is correct?

    maths-General
    General
    maths-

    If n(A)=10, n(B)=20,c=5 in the given Veen diagram. Find a and b.

    If n(A)=10, n(B)=20,c=5 in the given Veen diagram. Find a and b.

    maths-General
    General
    maths-

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like only tea?

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like only tea?

    maths-General
    General
    maths-

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like only coffee?

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like only coffee?

    maths-General
    General
    physics-

    A student takes 50 g m wax (specific heat equals 0.6 blank k c a l divided by k g ℃) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively

    Since specific heat equals 0.6 k c a l divided by g cross times ℃ equals 0.6 blank c a l divided by g cross times ℃
    From graph it is clear that in a minute, the temperature is raised from 0 ℃ to 50 ℃.
    rightwards double arrow Heat required for a minute equals 50 cross times 0.6 cross times 50 equals 1500 blank c a l
    Also from graph, Boiling point of wax is 200 ℃

    A student takes 50 g m wax (specific heat equals 0.6 blank k c a l divided by k g ℃) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively

    physics-General
    Since specific heat equals 0.6 k c a l divided by g cross times ℃ equals 0.6 blank c a l divided by g cross times ℃
    From graph it is clear that in a minute, the temperature is raised from 0 ℃ to 50 ℃.
    rightwards double arrow Heat required for a minute equals 50 cross times 0.6 cross times 50 equals 1500 blank c a l
    Also from graph, Boiling point of wax is 200 ℃
    General
    physics-

    A composite metal bar of uniform section is made up of length 25 blank c m of copper, 10 blank c m of nickel and 15 blank c m of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at 100 ℃ and the aluminium end at 0 ℃. The whole rod is covered with belt so that no heat loss occurs at the sides. If K subscript C u end subscript equals 2 K subscript A l end subscript and K subscript A l end subscript equals 3 K subscript N i end subscript, then what will be the temperatures of C u minus N i and N i minus A l junctions respectively

    If suppose K subscript N i end subscript equals K rightwards double arrow K subscript A l end subscript equals 3 K and K subscript C u end subscript equals 6 K
    Since all metal bars are connected in series
    So open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C u end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript A l end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript N i end subscript
    a n d blank fraction numerator 3 over denominator K subscript e q end subscript end fraction equals fraction numerator 1 over denominator K subscript C u end subscript end fraction plus fraction numerator 1 over denominator K subscript A l end subscript end fraction plus fraction numerator 1 over denominator K subscript N i end subscript end fraction equals fraction numerator 1 over denominator 6 K end fraction plus fraction numerator 1 over denominator 3 K end fraction plus fraction numerator 1 over denominator K end fraction equals fraction numerator 9 over denominator 6 K end fraction
    rightwards double arrow K subscript e q end subscript equals 2 K

    Hence, it open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C u end subscript
    rightwards double arrow fraction numerator K subscript e q end subscript A left parenthesis 100 minus 0 right parenthesis over denominator l subscript C o m b i n a t i o n end subscript end fraction equals fraction numerator K subscript C u end subscript A left parenthesis 100 minus theta subscript 1 end subscript right parenthesis over denominator l subscript C u end subscript end fraction
    rightwards double arrow blank fraction numerator 2 K blank A left parenthesis 100 minus 0 right parenthesis over denominator left parenthesis 25 plus 10 plus 15 right parenthesis end fraction equals fraction numerator 6 K blank A left parenthesis 100 minus theta subscript 1 end subscript right parenthesis over denominator 25 end fraction rightwards double arrow theta subscript 1 end subscript equals 83.33 ℃
    Similar if open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript A l end subscript
    rightwards double arrow fraction numerator 2 K blank A left parenthesis 100 minus 0 right parenthesis over denominator 50 end fraction equals fraction numerator 3 K blank A left parenthesis theta subscript 2 end subscript minus 0 right parenthesis over denominator 15 end fraction rightwards double arrow theta subscript 2 end subscript equals 20 ℃

    A composite metal bar of uniform section is made up of length 25 blank c m of copper, 10 blank c m of nickel and 15 blank c m of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at 100 ℃ and the aluminium end at 0 ℃. The whole rod is covered with belt so that no heat loss occurs at the sides. If K subscript C u end subscript equals 2 K subscript A l end subscript and K subscript A l end subscript equals 3 K subscript N i end subscript, then what will be the temperatures of C u minus N i and N i minus A l junctions respectively

    physics-General
    If suppose K subscript N i end subscript equals K rightwards double arrow K subscript A l end subscript equals 3 K and K subscript C u end subscript equals 6 K
    Since all metal bars are connected in series
    So open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C u end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript A l end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript N i end subscript
    a n d blank fraction numerator 3 over denominator K subscript e q end subscript end fraction equals fraction numerator 1 over denominator K subscript C u end subscript end fraction plus fraction numerator 1 over denominator K subscript A l end subscript end fraction plus fraction numerator 1 over denominator K subscript N i end subscript end fraction equals fraction numerator 1 over denominator 6 K end fraction plus fraction numerator 1 over denominator 3 K end fraction plus fraction numerator 1 over denominator K end fraction equals fraction numerator 9 over denominator 6 K end fraction
    rightwards double arrow K subscript e q end subscript equals 2 K

    Hence, it open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C u end subscript
    rightwards double arrow fraction numerator K subscript e q end subscript A left parenthesis 100 minus 0 right parenthesis over denominator l subscript C o m b i n a t i o n end subscript end fraction equals fraction numerator K subscript C u end subscript A left parenthesis 100 minus theta subscript 1 end subscript right parenthesis over denominator l subscript C u end subscript end fraction
    rightwards double arrow blank fraction numerator 2 K blank A left parenthesis 100 minus 0 right parenthesis over denominator left parenthesis 25 plus 10 plus 15 right parenthesis end fraction equals fraction numerator 6 K blank A left parenthesis 100 minus theta subscript 1 end subscript right parenthesis over denominator 25 end fraction rightwards double arrow theta subscript 1 end subscript equals 83.33 ℃
    Similar if open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript C o m b i n a t i o n end subscript equals open parentheses fraction numerator Q over denominator t end fraction close parentheses subscript A l end subscript
    rightwards double arrow fraction numerator 2 K blank A left parenthesis 100 minus 0 right parenthesis over denominator 50 end fraction equals fraction numerator 3 K blank A left parenthesis theta subscript 2 end subscript minus 0 right parenthesis over denominator 15 end fraction rightwards double arrow theta subscript 2 end subscript equals 20 ℃
    General
    physics-

    The plots of intensity of radiation v e r s u s blankwavelength of three black bodies at temperatures T subscript 1 end subscript comma blank T subscript 2 end subscript a n d T subscript 3 end subscript are shown. Then,

    According to Wien’s law
    lambda subscript m end subscript proportional to fraction numerator 1 over denominator T end fraction
    And from the figure
    open parentheses lambda subscript m end subscript close parentheses subscript 1 end subscript less than open parentheses lambda subscript m end subscript close parentheses subscript 3 end subscript less than open parentheses lambda subscript m end subscript close parentheses subscript 2 end subscript
    Therefore, T subscript 1 end subscript greater than T subscript 3 end subscript greater than T subscript 2 end subscript

    The plots of intensity of radiation v e r s u s blankwavelength of three black bodies at temperatures T subscript 1 end subscript comma blank T subscript 2 end subscript a n d T subscript 3 end subscript are shown. Then,

    physics-General
    According to Wien’s law
    lambda subscript m end subscript proportional to fraction numerator 1 over denominator T end fraction
    And from the figure
    open parentheses lambda subscript m end subscript close parentheses subscript 1 end subscript less than open parentheses lambda subscript m end subscript close parentheses subscript 3 end subscript less than open parentheses lambda subscript m end subscript close parentheses subscript 2 end subscript
    Therefore, T subscript 1 end subscript greater than T subscript 3 end subscript greater than T subscript 2 end subscript
    General
    maths-

    Let A equals left curly bracket A subscript 1 end subscript comma A subscript 2 end subscript comma A subscript 3 end subscript comma A subscript 4 end subscript comma A subscript 5 end subscript comma A subscript 6 end subscript right curly bracket be the set of six unit circles with centres C subscript 1 end subscript comma C subscript 2 end subscript comma C subscript 3 end subscript horizontal ellipsis C subscript 6 end subscript arranged as shown in the diagram. The relation R on A is defined by left parenthesis A subscript i end subscript comma A subscript j end subscript right parenthesis element of R less than rightwards double arrow C subscript i end subscript C subscript j end subscript less or equal than 2 square root of 2 then

    Let A equals left curly bracket A subscript 1 end subscript comma A subscript 2 end subscript comma A subscript 3 end subscript comma A subscript 4 end subscript comma A subscript 5 end subscript comma A subscript 6 end subscript right curly bracket be the set of six unit circles with centres C subscript 1 end subscript comma C subscript 2 end subscript comma C subscript 3 end subscript horizontal ellipsis C subscript 6 end subscript arranged as shown in the diagram. The relation R on A is defined by left parenthesis A subscript i end subscript comma A subscript j end subscript right parenthesis element of R less than rightwards double arrow C subscript i end subscript C subscript j end subscript less or equal than 2 square root of 2 then

    maths-General
    General
    maths-

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like either tea or coffee?

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like either tea or coffee?

    maths-General
    General
    maths-

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like neither tea nor coffee?

    In a population of 100 persons, 40 persons like tea and 30 persons like coffee. 10 persons like both of them. How many persons like neither tea nor coffee?

    maths-General
    General
    maths-

    Which of the following is correct?

    Which of the following is correct?

    maths-General
    General
    maths-

    Which of the following is set A?

    Which of the following is set A?

    maths-General
    General
    maths-

    Which of the following is set B?

    Which of the following is set B?

    maths-General