General
Easy
Maths-

If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

Maths-General

  1. 2 to the power of log subscript b end subscript invisible function application a end exponent    
  2. 3 to the power of log subscript a end subscript invisible function application b end exponent    
  3. 2 to the power of log subscript a end subscript invisible function application 2 end exponent    
  4. a to the power of log subscript b end subscript invisible function application 3 end exponent    

    Answer:The correct answer is: 3 to the power of log subscript a end subscript invisible function application b end exponent

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    maths-

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

    maths-General
    General
    maths-

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

    maths-General
    General
    maths-

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

    maths-General
    General
    maths-

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

    maths-General
    General
    maths-

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

    maths-General
    General
    maths-

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

    maths-General
    General
    maths-

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

    maths-General
    General
    maths-

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

    maths-General
    General
    maths-

    if ell parallel to mfind the value of x in given figure.

    if ell parallel to mfind the value of x in given figure.

    maths-General
    General
    physics-

    A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

    A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

    physics-General
    General
    maths-

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
    = log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1

    If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

    maths-General
    log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
    = log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1
    General
    maths-

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

    maths-General
    General
    maths-

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

    maths-General
    General
    maths-

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    If a2 + 4b2 = 12ab, then log (a + 2b) =

    maths-General
    General
    maths-

    Given that logpx = α and logqx = β, then value of logp/q x equals-

    Given that logpx = α and logqx = β, then value of logp/q x equals-

    maths-General