Maths-
General
Easy

Question

Let f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fractionand f left parenthesis 0 right parenthesis equals 0, then the value of f left parenthesis 1 right parenthesis be

  1. log invisible function application left parenthesis 1 plus square root of 2 right parenthesis    
  2. log invisible function application left parenthesis 1 plus square root of 2 right parenthesis minus fraction numerator pi over denominator 4 end fraction    
  3. log invisible function application left parenthesis 1 plus square root of 2 right parenthesis plus fraction numerator pi over denominator 2 end fraction    
  4. None of these    

The correct answer is: log invisible function application left parenthesis 1 plus square root of 2 right parenthesis minus fraction numerator pi over denominator 4 end fraction


    f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction
    Let x equals tan invisible function application theta comma d x equals sec to the power of 2 end exponent invisible function application theta d theta equals left parenthesis 1 plus x to the power of 2 end exponent right parenthesis. d theta
    f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta sec to the power of 2 end exponent invisible function application theta d theta over denominator sec to the power of 2 end exponent invisible function application theta left parenthesis 1 plus sec invisible function application theta right parenthesis end fraction
    equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta d theta over denominator 1 plus sec invisible function application theta end fraction theta equals not stretchy integral fraction numerator sin to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction equals not stretchy integral fraction numerator 1 minus cos to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction
    equals not stretchy integral fraction numerator left parenthesis 1 minus cos invisible function application theta right parenthesis d. theta over denominator cos invisible function application theta end fraction equals not stretchy integral sec invisible function application theta d theta minus not stretchy integral d theta
    equals log invisible function application left parenthesis x plus square root of 1 plus x to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application x plus c
    f left parenthesis 0 right parenthesis equals log invisible function application left parenthesis 0 plus square root of 1 plus 0 end root minus tan to the power of negative 1 end exponent invisible function application left parenthesis 0 right parenthesis plus c
    0 equals log invisible function application 1 minus 0 plus c Þ c equals 0
    f left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 1 plus 1 to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 2 right parenthesis minus fraction numerator pi over denominator 4 end fraction.

    Book A Free Demo

    +91

    Grade*

    Related Questions to study