Maths-
General
Easy
Question
Let y2 = 4ax be parabola and PQ be a focal chord of parabola. Let T be the point of intersection of tangents at P and Q. Then
- area of circumcircle of ΔPQT is
- orthocenter of ΔPQT will lie on tangent at vertex.
- incenter of ΔPQT will be vertex of parabola.
- incentre of ΔPQT will lie on directrix of parabola.
The correct answer is: area of circumcircle of ΔPQT is
for focal chord t1t2 = – 1
Tangent drawn at the extremities of focal chord are perpendicular and meet at directrix
= 90º
Hence PQ is diameter of circum circle of ΔPTQ.
2r = PQ r = (PQ/2)
Area of circum circle =
Related Questions to study
maths-
If the line 2x – 1 = 0 is the derectrix of the parabola y2 – kx + 6 = 0 then one of the value of K is -
If the line 2x – 1 = 0 is the derectrix of the parabola y2 – kx + 6 = 0 then one of the value of K is -
maths-General
maths-
If a double ordinate of the parabola y2 = 4ax be of length 8a, then the angle between the lines joining the vertex of the parabola to the ends of this double ordinate is
If a double ordinate of the parabola y2 = 4ax be of length 8a, then the angle between the lines joining the vertex of the parabola to the ends of this double ordinate is
maths-General
maths-
Tangents are drawn from a point P to the parabola y2 = 8x such that the slope of one tangent is twice the slope of other. The locus of P is
Tangents are drawn from a point P to the parabola y2 = 8x such that the slope of one tangent is twice the slope of other. The locus of P is
maths-General
physics-
In the adjoining figure along which axis the moment of inertia of the triangular lamina will be maximum- [Given that
In the adjoining figure along which axis the moment of inertia of the triangular lamina will be maximum- [Given that
physics-General
physics-
Three particles, each of mass m are situated at the vertices of an equilateral triangle ABC of side cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram units will be :
Three particles, each of mass m are situated at the vertices of an equilateral triangle ABC of side cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram units will be :
physics-General
Maths-
The locus of the middle points of chords of a parabola which subtend a right angle at the vertex of the parabola is
The locus of the middle points of chords of a parabola which subtend a right angle at the vertex of the parabola is
Maths-General
maths-
If the parabola y2 = 4ax passes through (3, 2), then length of latus rectum of the parabola is
If the parabola y2 = 4ax passes through (3, 2), then length of latus rectum of the parabola is
maths-General
maths-
The locus of the poles of focal chord of the parabola y2 = 4ax is
The locus of the poles of focal chord of the parabola y2 = 4ax is
maths-General
maths-
The locus of the mid points of the chords of the parabola y2 = 4ax which passes through a given point (β,)
The locus of the mid points of the chords of the parabola y2 = 4ax which passes through a given point (β,)
maths-General
maths-
The equation of common tangent to the curves y2 = 8x and xy = –1 is
The equation of common tangent to the curves y2 = 8x and xy = –1 is
maths-General
maths-
Angle between tangents drawn from the point (1, 4) to the parabola y2 = 4x is
Angle between tangents drawn from the point (1, 4) to the parabola y2 = 4x is
maths-General
maths-
The general equation of 2nd degree 9x2 –24xy + 16y2 – 20x –15y – 60 = 0 represents
The general equation of 2nd degree 9x2 –24xy + 16y2 – 20x –15y – 60 = 0 represents
maths-General
maths-
If (2, 0) is the vertex and y-axis is the directrix of the parabola then its focus is
If (2, 0) is the vertex and y-axis is the directrix of the parabola then its focus is
maths-General
maths-
The equation of directrix of the parabola y2 + 4y + 4x + 2 = 0 is
The equation of directrix of the parabola y2 + 4y + 4x + 2 = 0 is
maths-General
maths-
The parametric representation of a parabola is x = 3 + t2, y = 2t – 1. Its focus is -
The parametric representation of a parabola is x = 3 + t2, y = 2t – 1. Its focus is -
maths-General