Maths-
General
Easy

Question

No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

  1. zero    
  2. exactly one    
  3. exactly two    
  4. None of these    

The correct answer is: exactly two

Book A Free Demo

+91

Grade*

Related Questions to study

General
maths-

If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

maths-General
General
maths-

If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
= log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1

If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

maths-General
log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
= log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1
General
maths-

The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

maths-General
General
maths-

Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

maths-General
General
maths-

If a2 + 4b2 = 12ab, then log (a + 2b) =

If a2 + 4b2 = 12ab, then log (a + 2b) =

maths-General
General
maths-

Given that logpx = α and logqx = β, then value of logp/q x equals-

Given that logpx = α and logqx = β, then value of logp/q x equals-

maths-General
General
maths-

If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

maths-General
General
physics-

The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

Displacement (in magnitude)
equals fraction numerator 1 over denominator 2 end fraction open parentheses 3 cross times 2 minus fraction numerator 1 over denominator 2 end fraction cross times 1 cross times 2 plus 1 cross times 1 close parenthesesm=3m

The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

physics-General
Displacement (in magnitude)
equals fraction numerator 1 over denominator 2 end fraction open parentheses 3 cross times 2 minus fraction numerator 1 over denominator 2 end fraction cross times 1 cross times 2 plus 1 cross times 1 close parenthesesm=3m
General
maths-

Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

ϕ left parenthesis x right parenthesis equals f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis text  where  end text x element of open square brackets x subscript 0 end subscript comma b close square brackets by c element of open parentheses x subscript 0 end subscript comma b close parentheses contains as member
ϕ to the power of ´ end exponent left parenthesis c right parenthesis equals fraction numerator ϕ left parenthesis b right parenthesis minus ϕ open parentheses x subscript 0 end subscript close parentheses over denominator b minus x subscript 0 end subscript end fraction greater than 0
therefore f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis text  for  end text x equals b

Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

maths-General
ϕ left parenthesis x right parenthesis equals f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis text  where  end text x element of open square brackets x subscript 0 end subscript comma b close square brackets by c element of open parentheses x subscript 0 end subscript comma b close parentheses contains as member
ϕ to the power of ´ end exponent left parenthesis c right parenthesis equals fraction numerator ϕ left parenthesis b right parenthesis minus ϕ open parentheses x subscript 0 end subscript close parentheses over denominator b minus x subscript 0 end subscript end fraction greater than 0
therefore f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis text  for  end text x equals b
General
maths-

In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

maths-General
General
maths-

In the given figure, find the values of ‘x’ and ‘y’

In the given figure, find the values of ‘x’ and ‘y’

maths-General
General
maths-

PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

maths-General
General
maths-

Find the value of ‘x’ in the given figure

Find the value of ‘x’ in the given figure

maths-General
General
maths-

In the given figure, find PR

In the given figure, find PR

maths-General
General
maths-

In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

maths-General