General
Easy
Maths-

The area (in sq units) of the region bounded by the curvesblank y plus 2 x to the power of 2 end exponent equals 0 blank and blank y plus 3 x to the power of 2 end exponent equals 1 blank is

Maths-General

  1. 1/3    
  2. 3/4    
  3. 3/5    
  4. 4/(3)    

    Answer:The correct answer is: 4/(3)

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    maths-

    The area between the parabolasblank y to the power of 2 end exponent equals4a(x+a) and
    y to the power of 2 end exponent=-4a(x-a)in sQ units….

    The area between the parabolasblank y to the power of 2 end exponent equals4a(x+a) and
    y to the power of 2 end exponent=-4a(x-a)in sQ units….

    maths-General
    General
    maths-

    The area of the region between the curveblank x to the power of 2 end exponent plus y to the power of 2 end exponent equals4 and x = 0; x =1 is….

    The area of the region between the curveblank x to the power of 2 end exponent plus y to the power of 2 end exponent equals4 and x = 0; x =1 is….

    maths-General
    General
    maths-

    The area of the region bounded by y=|x-1| and y=1 in sq. units is

    The area of the region bounded by y=|x-1| and y=1 in sq. units is

    maths-General
    General
    maths-

    The area of the elliptic quadratic with the semi major axis and semi minor axis as 6 and 4 respectively

       

    The area of the elliptic quadratic with the semi major axis and semi minor axis as 6 and 4 respectively

    maths-General
       
    General
    maths-

    The area of circle circumscribing ΔABC is

    The area of circle circumscribing ΔABC is

    maths-General
    General
    maths-

    Statement-I : The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct. Statement-II : Circumradius  2 (inradius)

       

    Statement-I : The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct. Statement-II : Circumradius  2 (inradius)

    maths-General
       
    General
    maths-

    The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is


    table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table

    The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is

    maths-General

    table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table
    General
    maths-

    The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

    The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

    maths-General
    General
    maths-

    The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

    sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
    table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
    (not possible for real x)
    text or  end text sin invisible function application x equals 0
    Hence, the solutions are x = 0, p, 2p, 3p.

    The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

    maths-General
    sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
    table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
    (not possible for real x)
    text or  end text sin invisible function application x equals 0
    Hence, the solutions are x = 0, p, 2p, 3p.
    General
    maths-

    s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

    table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table

    s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

    maths-General
    table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table
    General
    maths-

    fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

    fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

    maths-General
    General
    maths-

    If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

    If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

    maths-General
    General
    maths-

    If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

    Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.

    If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

    maths-General
    Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.
    General
    maths-

    The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

    The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

    maths-General
    General
    maths-

    The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

    The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

    maths-General