Physics-
General
Easy
Question
Equal force F (> mg) is applied to string in all the 3 cases. Starting from rest, the point of application of force moves a distance of 2 m down in all cases. In which case the block has maximum kinetic energy?
1)
2)
3)
- 1
- 2
- 3
- equal in all 3 cases
The correct answer is: 3
Related Questions to study
physics-
The dumbell is placed on a frictionless horizontal table. Sphere A is attached to a frictionless pivot so that B can be made to rotate about A with constant angular velocity. If B makes one revolution in period P, the tension in the rod is
The dumbell is placed on a frictionless horizontal table. Sphere A is attached to a frictionless pivot so that B can be made to rotate about A with constant angular velocity. If B makes one revolution in period P, the tension in the rod is
physics-General
physics-
A pendulum bob is swinging in a vertical plane such that its angular amplitude is less than 900 . At its highest point, the string is cut. Which trajectory is possible for the bob afterwards.
A pendulum bob is swinging in a vertical plane such that its angular amplitude is less than 900 . At its highest point, the string is cut. Which trajectory is possible for the bob afterwards.
physics-General
physics-
A car travelling on a smooth road passes through a curved portion of the road in form of an arc of circle of radius 10 m. If the mass of car is 500 kg, the reaction on car at lowest point P where its speed is 20 m/s is
A car travelling on a smooth road passes through a curved portion of the road in form of an arc of circle of radius 10 m. If the mass of car is 500 kg, the reaction on car at lowest point P where its speed is 20 m/s is
physics-General
physics-
Tangential acceleration of a particle moving in a circle of radius 1 m varies with time t as (initial velocity of particle is zero). Time after which total acceleration of particle makes and angle of 30° with radial acceleration is
Tangential acceleration of a particle moving in a circle of radius 1 m varies with time t as (initial velocity of particle is zero). Time after which total acceleration of particle makes and angle of 30° with radial acceleration is
physics-General
physics-
A truck starting from rest moves with an acceleration of 5 m/s2 for 1 sec and then moves with constant velocity. The velocity w.r.t ground v/s time graph for block in truck is ( Assume that block does not fall off the truck)
A truck starting from rest moves with an acceleration of 5 m/s2 for 1 sec and then moves with constant velocity. The velocity w.r.t ground v/s time graph for block in truck is ( Assume that block does not fall off the truck)
physics-General
physics-
The acceleration of 10 kg block when F = 30N
The acceleration of 10 kg block when F = 30N
physics-General
physics-
The maximum acceleration of 5 kg block
The maximum acceleration of 5 kg block
physics-General
physics-
The maximum "F" which will not cause motion of any of the blocks.
The maximum "F" which will not cause motion of any of the blocks.
physics-General
physics-
When F = 2N, the frictional force between 10 kg block and 5 kg block is
When F = 2N, the frictional force between 10 kg block and 5 kg block is
physics-General
physics-
When F = 2N, the frictional force between 5 kg block and ground is
When F = 2N, the frictional force between 5 kg block and ground is
physics-General
physics-
Block B of mass 100 kg rests on a rough surface of friction coefficient m = 1/3. A rope is tied to block B as shown in figure. The maximum acceleration with which boy A of 25 kg can climbs on rope without making block move is :
Block B of mass 100 kg rests on a rough surface of friction coefficient m = 1/3. A rope is tied to block B as shown in figure. The maximum acceleration with which boy A of 25 kg can climbs on rope without making block move is :
physics-General
physics-
In the arrangement shown in the figure, mass of the block B and A is 2m and m respectively. Surface between B and floor is smooth. The block B is connected to the block C by means of a string pulley system. If the whole system is released, then find the minimum value of mass of block C so that block A remains stationary w.r.t. B. Coefficient of friction between A and B is m :
In the arrangement shown in the figure, mass of the block B and A is 2m and m respectively. Surface between B and floor is smooth. The block B is connected to the block C by means of a string pulley system. If the whole system is released, then find the minimum value of mass of block C so that block A remains stationary w.r.t. B. Coefficient of friction between A and B is m :
physics-General
physics-
If force F is increasing with time and at t = 0 , F = 0 where will slipping first start?
If force F is increasing with time and at t = 0 , F = 0 where will slipping first start?
physics-General
physics-
A force acts on block shown. The force of friction acting on the block is :
A force acts on block shown. The force of friction acting on the block is :
physics-General
physics-
Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2m ?
Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2m ?
physics-General