Physics-
General
Easy

Question

In a Bohr atom the electron is replaced by a particle of mass 150 times the mass of the electron and the same charge If a0 is the radius of the first Bohr orbit of the orbital atom, then that of the new atom will be

  1. 150 a subscript 0
       
  2. square root of 150 a subscript 0 end subscript    
  3. fraction numerator a subscript 0 end subscript over denominator square root of 150 end fraction    
  4. fraction numerator a subscript 0 end subscript over denominator 150 end fraction    

The correct answer is: fraction numerator a subscript 0 end subscript over denominator 150 end fraction

Book A Free Demo

+91

Grade*

Related Questions to study

General
physics-

The figure shows energy levels of a certain atom, when the system moves from level 2E is emitted The to E, a photon of wavelength wavelength of photon produced during its transition from level 4/3 E to E level is:

The figure shows energy levels of a certain atom, when the system moves from level 2E is emitted The to E, a photon of wavelength wavelength of photon produced during its transition from level 4/3 E to E level is:

physics-General
General
physics-

The ionisation energy of Li to the power of 2 plus end exponent atom in ground state is :

The ionisation energy of Li to the power of 2 plus end exponent atom in ground state is :

physics-General
General
physics-

A cylindrical solid of length L and radius a is having varying resistivity given by r = r0 x where r0 is a positive constant and x is measured from left end of solid. The cell shown in the figure is having emf V and negligible internal resistance. The electric field as a function of x is best described by :

Consider an elemental part of solid at a distance x from left end of width dx. Resistance of this elemental part is

A cylindrical solid of length L and radius a is having varying resistivity given by r = r0 x where r0 is a positive constant and x is measured from left end of solid. The cell shown in the figure is having emf V and negligible internal resistance. The electric field as a function of x is best described by :

physics-General
Consider an elemental part of solid at a distance x from left end of width dx. Resistance of this elemental part is
General
physics-

A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

A charged oil drop falls with terminal velocity V0 in the absence of electric field An electric field E keeps it stationary The drop acquires additional charge q and starts moving upwards with velocity V0 The initial charge on the drop was

physics-General
General
maths-

if ell parallel to mfind the value of x in given figure.

if ell parallel to mfind the value of x in given figure.

maths-General
General
maths-

The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

The number of positive integral solutions of the inequation fraction numerator x squared left parenthesis 3 x minus 4 right parenthesis cubed left parenthesis x minus 2 right parenthesis to the power of 4 over denominator left parenthesis x minus 5 right parenthesis to the power of 5 left parenthesis 2 x minus 7 right parenthesis to the power of 6 end fraction less or equal than 0 is –

maths-General
General
maths-

Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

Set of values of x satisfying the inequality fraction numerator left parenthesis x minus 3 right parenthesis squared left parenthesis 2 x plus 5 right parenthesis squared left parenthesis x minus 7 right parenthesis over denominator open parentheses x squared plus x plus 1 close parentheses left parenthesis 3 x plus 6 right parenthesis squared end fraction less or equal than 0 is left square bracket a comma b right parenthesis union left parenthesis b comma c right square bracket then 2a + b + c is equal to

maths-General
General
maths-

Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

Number of integral values of x for which the inequality log10 open parentheses fraction numerator 2 x minus 2007 over denominator x plus 1 end fraction close parenthesesless or equal than 0 holds true, is

maths-General
General
maths-

x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

x to the power of log subscript 5 invisible function application x end exponent greater than 5 implies

maths-General
General
maths-

log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

log4 (2x2 + x + 1) – log2 (2x – 1) less or equal than – tan fraction numerator 7 pi over denominator 4 end fraction

maths-General
General
maths-

The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

The solution set of the inequation log1/3 (x2 + x + 1) + 1 > 0 is

maths-General
General
maths-

If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

If open parentheses a to the power of log subscript b end subscript invisible function application x end exponent close parentheses to the power of 2 end exponent–5x to the power of log subscript b end subscript invisible function application a end exponent + 6 = 0 where a > 0, b > 0 & ab not equal to 1. Then the value of x is equal to

maths-General
General
maths-

No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

No. of ordered pair satisfying simultaneously the system of equation 2 to the power of square root of x end exponent. 2 to the power of square root of y end exponent= 256 & log10square root of x y end root – log10 1.5 = 1 is.

maths-General
General
maths-

If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

If x to the power of left square bracket log subscript 3 end subscript invisible function application x to the power of 2 end exponent plus left parenthesis log subscript 3 end subscript invisible function application x right parenthesis to the power of 2 end exponent minus 10 right square bracket end exponent= 1/x2, then x =

maths-General
General
maths-

If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
= log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1

If xn > xn–1 >...> x2 > x1 > 1 then the value of log subscript straight x subscript 1 end subscript invisible function application log subscript straight x subscript 2 end subscript invisible function application log subscript straight x subscript 3 end subscript invisible function application horizontal ellipsis log subscript straight x subscript straight n end subscript invisible function application x subscript nblank to the power of x subscript n minus 1 end subscript superscript up right diagonal ellipsis to the power of x subscript 1 end exponent end superscript end exponentis equal to-

maths-General
log subscript x subscript 1 end subscript end subscript invisible function application blanklog subscript x subscript 3 end subscript end subscript invisible function application blank...log subscript x subscript n minus 1 end subscript end subscript invisible function application blank open parentheses x subscript n minus 1 end subscript to the power of x subscript n minus 2 end subscript superscript. to the power of. to the power of. x subscript 1 end subscript end exponent end exponent end superscript end exponent log subscript x subscript n end subscript end subscript invisible function application x subscript n end subscript close parentheses
= log subscript x subscript 1 end subscript end subscript invisible function application x subscript 1 end subscript= 1