Physics-
General
Easy

Question

The work done by a force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 blank m is

  1. 225 blank J    
  2. 200 blank J    
  3. 400 blank J    
  4. 175 blank J    

The correct answer is: 200 blank J


    Work done W equals area under F minus S graph
    = area of trapezium A B C D plus area of trapezium C E F D
    equals fraction numerator 1 over denominator 2 end fraction cross times open parentheses 10 plus 15 close parentheses cross times 10 plus fraction numerator 1 over denominator 2 end fraction cross times left parenthesis 10 plus 20 right parenthesis cross times 5
    equals 125 plus 75 equals 200 blank J

    Related Questions to study

    General
    physics-

    A particle is acted upon by a force Fwhich varies with position xas shown in figure. If the particle at x equals 0 has kinetic energy of 25 J, then the kinetic energy of the particle at x equals 16 blank m is

    A particle is acted upon by a force Fwhich varies with position xas shown in figure. If the particle at x equals 0 has kinetic energy of 25 J, then the kinetic energy of the particle at x equals 16 blank m is

    physics-General
    General
    physics-

    A vertical spring with force constant K is fixed on a table. A ball of mass mat a height h above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d. The net work done in the process is

    A vertical spring with force constant K is fixed on a table. A ball of mass mat a height h above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d. The net work done in the process is

    physics-General
    General
    physics-

    Figure shows the F-xgraph. Where F is the force applied and x is the distance covered

    By the body along a straight line path. Given that F is in n e w t o n and x blankin m e t r e, what is the work done?

    Figure shows the F-xgraph. Where F is the force applied and x is the distance covered

    By the body along a straight line path. Given that F is in n e w t o n and x blankin m e t r e, what is the work done?

    physics-General
    parallel
    General
    maths-

    Range of function f(x) = fraction numerator x to the power of 2 end exponent plus 2 x plus 3 over denominator x end fraction, x element of times R is given by -

    Range of function f(x) = fraction numerator x to the power of 2 end exponent plus 2 x plus 3 over denominator x end fraction, x element of times R is given by -

    maths-General
    General
    physics-

    A light inextensible string that goes over a smooth fixed pulley as shown in the figure connects two blocks of masses 0.36 blank k gand 0.72 blank k g. Taking g equals 10 blank m divided by s to the power of 2 end exponent, find the work done (in joules) by the string on the block of mass 0.36 blank k g during the first second after the system is released from rest

    A light inextensible string that goes over a smooth fixed pulley as shown in the figure connects two blocks of masses 0.36 blank k gand 0.72 blank k g. Taking g equals 10 blank m divided by s to the power of 2 end exponent, find the work done (in joules) by the string on the block of mass 0.36 blank k g during the first second after the system is released from rest

    physics-General
    General
    physics-

    An object of mass m is tied to a string of length L and a variable horizontal force is applied on it which starts at zero and gradually increases until the string makes an angel theta with the vertical. Work done by the force F is

    An object of mass m is tied to a string of length L and a variable horizontal force is applied on it which starts at zero and gradually increases until the string makes an angel theta with the vertical. Work done by the force F is

    physics-General
    parallel
    General
    physics-

    A block of mass m equals 25kg sliding on a smooth horizontal surface with a velocity v equals 3 m s to the power of negative 1 end exponent meets the spring of spring constant k equals 100 N m to the power of negative 1 end exponent fixed at one end as shown in figure. The maximum compression of the spring and velocity of block as is returns to the original position respectively are

    A block of mass m equals 25kg sliding on a smooth horizontal surface with a velocity v equals 3 m s to the power of negative 1 end exponent meets the spring of spring constant k equals 100 N m to the power of negative 1 end exponent fixed at one end as shown in figure. The maximum compression of the spring and velocity of block as is returns to the original position respectively are

    physics-General
    General
    physics-

    The relationship between the force F and position x of a body is as shown in figure. The work done in displacing the body from x equals 1 mto x equals 5m will be

    The relationship between the force F and position x of a body is as shown in figure. The work done in displacing the body from x equals 1 mto x equals 5m will be

    physics-General
    General
    physics-

    Three objects A comma B and C are kept in a straight line on a frictionless horizontal surface. These have masses m comma blank 2 m and m respectively. The object A moves towards B with a speed 9 blank m divided by s and makes an elastic collision with it. Thereafter, B makes completely inelastic collision with C. All motions occur on the same straight line. Find the final speed (in m divided by s) of the object C

    Three objects A comma B and C are kept in a straight line on a frictionless horizontal surface. These have masses m comma blank 2 m and m respectively. The object A moves towards B with a speed 9 blank m divided by s and makes an elastic collision with it. Thereafter, B makes completely inelastic collision with C. All motions occur on the same straight line. Find the final speed (in m divided by s) of the object C

    physics-General
    parallel
    General
    physics-

    The relation between the displacement X of an object produced by the application of the variable force F is represented by a graph shown in the figure. If the object undergoes a displacement from X equals 0.5 blank m to X equals 2.5 blank m the work done will be approximately equal to

    The relation between the displacement X of an object produced by the application of the variable force F is represented by a graph shown in the figure. If the object undergoes a displacement from X equals 0.5 blank m to X equals 2.5 blank m the work done will be approximately equal to

    physics-General
    General
    physics-

    In the given curved road, if particle is released from A then

    In the given curved road, if particle is released from A then

    physics-General
    General
    physics-

    A body of mass 2 blank k g slides down a curved track which is quadrant of a circle of radius 1 blank m e t r e. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is

    A body of mass 2 blank k g slides down a curved track which is quadrant of a circle of radius 1 blank m e t r e. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is

    physics-General
    parallel
    General
    physics-

    A 10 kg brick moves along an x-axis. Its acceleration as a function of its position is shown in figure. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x equals 0 to x equals 8.0m?

    A 10 kg brick moves along an x-axis. Its acceleration as a function of its position is shown in figure. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x equals 0 to x equals 8.0m?

    physics-General
    General
    physics-

    Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 blank m

    Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 blank m

    physics-General
    General
    physics-

    The potential energy of a system is represented in the first figure. The force acting on the system will be represented by

    The potential energy of a system is represented in the first figure. The force acting on the system will be represented by

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.