Physics-
General
Easy
Question
Three blocks are placed on smooth horizontal surface and lie on same horizontal straight line. Block 1 and block 3 have mass m each and block 2 has mass M (M > m). Block 2 and block 3 are initially stationary, while block 1 is initially moving towards block 2 with speed v as shown. Assume that all collisions are headon and perfectly elastic. What value of ensures that block 1 and block 3 have the same final speed?
The correct answer is:
Related Questions to study
physics-
A system of two blocks A and B are connected by an inextensible massless string as shown in the figure . The pulley is massless and frictionless. Initially the system is at rest when, a bullet of mass 'm' moving with a velocity 'u' hits the block 'B' and gets embedded into it. The impulse imparted by tension force to the block of mass 3m is :
A system of two blocks A and B are connected by an inextensible massless string as shown in the figure . The pulley is massless and frictionless. Initially the system is at rest when, a bullet of mass 'm' moving with a velocity 'u' hits the block 'B' and gets embedded into it. The impulse imparted by tension force to the block of mass 3m is :
physics-General
physics-
A sound source is falling under gravity. At some time t=0, the detector lies vertically hallow sources at a depth as shown in figure. If v is the velocity of sound and is frequency recorded after t=2s is
A sound source is falling under gravity. At some time t=0, the detector lies vertically hallow sources at a depth as shown in figure. If v is the velocity of sound and is frequency recorded after t=2s is
physics-General
physics-
A gun is firing 20 balls per seconds of mass 20 gm each on the smooth horizontal table surface ABCD. If the collision is perfectly elastic and balls are striking at the centre of table with a speed 5 m/sec at an angle of with the vertical just before collision, then force exerted by one of the leg on ground is (assume total weight of the table is 0.2 kg and g = 10 )
A gun is firing 20 balls per seconds of mass 20 gm each on the smooth horizontal table surface ABCD. If the collision is perfectly elastic and balls are striking at the centre of table with a speed 5 m/sec at an angle of with the vertical just before collision, then force exerted by one of the leg on ground is (assume total weight of the table is 0.2 kg and g = 10 )
physics-General
physics-
Three balls A, B and C are placed on a smooth horizontal surface. Ball B collides with ball C with an initial velocity n as shown in the figure. Total number of collisions between the balls will be : (All collisions are elastic)
Three balls A, B and C are placed on a smooth horizontal surface. Ball B collides with ball C with an initial velocity n as shown in the figure. Total number of collisions between the balls will be : (All collisions are elastic)
physics-General
physics-
Two men ‘A’ and ‘B’ are standing on a plank. ‘B’ is at the middle of the plank and ‘A’ is the left end of the plank. The surface between plank and ground is smooth. System is initially at rest and masses are as shown in figure. ‘A’ and ‘B’ starts moving such that the position of ‘B’ remains fixed with respect to ground. Then the point where A meets B is located at
Two men ‘A’ and ‘B’ are standing on a plank. ‘B’ is at the middle of the plank and ‘A’ is the left end of the plank. The surface between plank and ground is smooth. System is initially at rest and masses are as shown in figure. ‘A’ and ‘B’ starts moving such that the position of ‘B’ remains fixed with respect to ground. Then the point where A meets B is located at
physics-General
physics-
In a vertical plane inside a smooth hollow thin tube a block of same mass as that of tube is released as shown in figure. When it is slightly disturbed, it moves towards right. By the time the block reaches the right end of the tube then the displacement of the tube will be (where ‘R’ is mean radius of tube). Assume that the tube remains in vertical plane.
In a vertical plane inside a smooth hollow thin tube a block of same mass as that of tube is released as shown in figure. When it is slightly disturbed, it moves towards right. By the time the block reaches the right end of the tube then the displacement of the tube will be (where ‘R’ is mean radius of tube). Assume that the tube remains in vertical plane.
physics-General
physics-
The figure shows a hollow cube of side 'a' of volume V. There is a small chamber of volume in the cube as shown. This chamber is completely filled by m kg of water. Water leaks through a hole H. Then the work done by gravity in this process assuming that the complete water finally lies at the bottom of the cube is :
The figure shows a hollow cube of side 'a' of volume V. There is a small chamber of volume in the cube as shown. This chamber is completely filled by m kg of water. Water leaks through a hole H. Then the work done by gravity in this process assuming that the complete water finally lies at the bottom of the cube is :
physics-General
physics-
On a smooth carom board, a coin moving in negative y-direction with a speed of 3 m/s is being hit at the point (4, 6) by a striker moving along negative x-axis. The line joining centres of the coin and the striker just before the collision is parallel to x-axis. After collision the coin goes into the hole located at the origin. Masses of the striker and the coin are equal. Considering the collision to be elastic, the initial and final speeds of the striker in m/s will be :
On a smooth carom board, a coin moving in negative y-direction with a speed of 3 m/s is being hit at the point (4, 6) by a striker moving along negative x-axis. The line joining centres of the coin and the striker just before the collision is parallel to x-axis. After collision the coin goes into the hole located at the origin. Masses of the striker and the coin are equal. Considering the collision to be elastic, the initial and final speeds of the striker in m/s will be :
physics-General
physics-
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) If collision between the block and the incline is completely elastic, then the vertical (upward) component of the velocity of the block at point B, immediately after it strikes the second incline is :–
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) If collision between the block and the incline is completely elastic, then the vertical (upward) component of the velocity of the block at point B, immediately after it strikes the second incline is :–
physics-General
physics-
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) The speed of the block at point C, immediately before it leaves the second incline is :–
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) The speed of the block at point C, immediately before it leaves the second incline is :–
physics-General
physics-
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) The speed of the block at point B immediately after it strikes the second incline is :–
A small block of mass M moves on a frictionless surface of an inclined plane, as shown in figure. The angle of the incline suddenly changes from to at point B. The block is initially at rest at A. Assume that collisions between the block and the incline are totally inelastic (g = 10 ) The speed of the block at point B immediately after it strikes the second incline is :–
physics-General
physics-
Look at the drawing given in the figure which has been drawn with ink of uniform line– thickness. The mass of ink used to draw each of the two inner circles, and each of the two line segments in m. The mass of the ink used to draw the outer circle is 6m. The coordinates of the centres of the different parts are : outer circle (0, 0), left inner circle (– a, a), right inner circle (a, a), vertical line (0, 0) and horizontal line (0, – a). The y–coordinates of the centre of mass of the ink in this drawing is :–
Look at the drawing given in the figure which has been drawn with ink of uniform line– thickness. The mass of ink used to draw each of the two inner circles, and each of the two line segments in m. The mass of the ink used to draw the outer circle is 6m. The coordinates of the centres of the different parts are : outer circle (0, 0), left inner circle (– a, a), right inner circle (a, a), vertical line (0, 0) and horizontal line (0, – a). The y–coordinates of the centre of mass of the ink in this drawing is :–
physics-General
physics-
Two small particles of equal masses start moving in opposite directions from a point A in a horizontal circular orbit. Their tangential velocities are v and 2v, respectively, as shown in the figure. Between collisions, the particles move with constant speeds. After making how many elastic collisions, other that at A, these two particles will again reach the point A ?
Two small particles of equal masses start moving in opposite directions from a point A in a horizontal circular orbit. Their tangential velocities are v and 2v, respectively, as shown in the figure. Between collisions, the particles move with constant speeds. After making how many elastic collisions, other that at A, these two particles will again reach the point A ?
physics-General
maths-
If the line x + y = 1 touches the parabola y2 – y + x = 0 and h = value of x where | x | is not differentiable, k = cos2nx, where . then the point of contact is
If the line x + y = 1 touches the parabola y2 – y + x = 0 and h = value of x where | x | is not differentiable, k = cos2nx, where . then the point of contact is
maths-General
maths-
Two parabolas y2 = 4a (x –λ1) and x2 = 4a (y –2) always touch each other, 1 and λ 2 being variable parameters. Then, their points of contact lie on a
Two parabolas y2 = 4a (x –λ1) and x2 = 4a (y –2) always touch each other, 1 and λ 2 being variable parameters. Then, their points of contact lie on a
maths-General