Maths-
General
Easy

Question

The area of circle circumscribing ΔABC is

  1. pi over 8
  2. pi over 4
  3. pi over 2
  4. straight pi

The correct answer is: pi over 4

Related Questions to study

General
maths-

Statement-I : The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct. Statement-II : Circumradius  2 (inradius)

   

Statement-I : The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct. Statement-II : Circumradius  2 (inradius)

maths-General
   
General
maths-

The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is


table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table

The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is

maths-General

table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table
General
Maths-

The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

space space space space sin space 5 x. space cos space 3 x space equals sin space 6 x. space cos space 2 x
rightwards double arrow 1 half open parentheses sin space 8 x plus sin space 2 x close parentheses equals 1 half open parentheses sin space 8 x plus sin space 4 x close parentheses
rightwards double arrow sin space 2 x space minus sin space 4 x space equals 0
rightwards double arrow sin left parenthesis 3 x minus x right parenthesis minus sin left parenthesis 3 x plus x right parenthesis equals 0
rightwards double arrow negative 2 space sin space x. space cos space 3 x space equals 0
rightwards double arrow sin space x equals 0 space o r space cos space 3 x space equals 0
i. e. space x space equals n straight pi left parenthesis straight n element of straight I right parenthesis comma space or space 3 straight x equals 2 kπ plus-or-minus straight pi over 2 left parenthesis straight k element of straight k right parenthesis
So comma space straight x element of left square bracket 0 comma space straight pi right parenthesis
space then space given space equation space is space satisfied space of space straight x equals 0 comma space straight pi comma space straight pi over 6 comma space straight pi over 2 comma space fraction numerator 5 straight pi over denominator 6 end fraction.

The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

Maths-General
space space space space sin space 5 x. space cos space 3 x space equals sin space 6 x. space cos space 2 x
rightwards double arrow 1 half open parentheses sin space 8 x plus sin space 2 x close parentheses equals 1 half open parentheses sin space 8 x plus sin space 4 x close parentheses
rightwards double arrow sin space 2 x space minus sin space 4 x space equals 0
rightwards double arrow sin left parenthesis 3 x minus x right parenthesis minus sin left parenthesis 3 x plus x right parenthesis equals 0
rightwards double arrow negative 2 space sin space x. space cos space 3 x space equals 0
rightwards double arrow sin space x equals 0 space o r space cos space 3 x space equals 0
i. e. space x space equals n straight pi left parenthesis straight n element of straight I right parenthesis comma space or space 3 straight x equals 2 kπ plus-or-minus straight pi over 2 left parenthesis straight k element of straight k right parenthesis
So comma space straight x element of left square bracket 0 comma space straight pi right parenthesis
space then space given space equation space is space satisfied space of space straight x equals 0 comma space straight pi comma space straight pi over 6 comma space straight pi over 2 comma space fraction numerator 5 straight pi over denominator 6 end fraction.
parallel
General
maths-

The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
(not possible for real x)
text or  end text sin invisible function application x equals 0
Hence, the solutions are x = 0, p, 2p, 3p.

The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

maths-General
sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
(not possible for real x)
text or  end text sin invisible function application x equals 0
Hence, the solutions are x = 0, p, 2p, 3p.
General
maths-

s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table

s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

maths-General
table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table
General
Maths-

fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

Maths-General
parallel
General
Maths-

If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

Maths-General
General
maths-

If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.

If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

maths-General
Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.
General
Maths-

The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

Maths-General
parallel
General
maths-

The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

maths-General
General
maths-

Coefficient of x cubed y to the power of 4 z squared is left parenthesis 2 x minus 3 y plus 4 z right parenthesis to the power of 9 is

6 A g N O subscript 3 end subscript plus A s H subscript 3 end subscript plus 3 H subscript 2 end subscript O ⟶
6 A g stack stack downwards arrow with _ below plus H subscript 3 end subscript A s O subscript 3 end subscript with _ below plus 6 H N O subscript 3 end subscript

Coefficient of x cubed y to the power of 4 z squared is left parenthesis 2 x minus 3 y plus 4 z right parenthesis to the power of 9 is

maths-General
6 A g N O subscript 3 end subscript plus A s H subscript 3 end subscript plus 3 H subscript 2 end subscript O ⟶
6 A g stack stack downwards arrow with _ below plus H subscript 3 end subscript A s O subscript 3 end subscript with _ below plus 6 H N O subscript 3 end subscript
General
maths-

Coefficient of x to the power of r is 1 plus left parenthesis 1 plus x right parenthesis plus left parenthesis 1 plus x right parenthesis squared plushorizontal ellipsis plus left parenthesis 1 plus x right parenthesis to the power of n is

Because of the partial positive charge on adjacent N-atoms there is a repulsion along N  N bond, hence N  N bond distance become higher.

Coefficient of x to the power of r is 1 plus left parenthesis 1 plus x right parenthesis plus left parenthesis 1 plus x right parenthesis squared plushorizontal ellipsis plus left parenthesis 1 plus x right parenthesis to the power of n is

maths-General
Because of the partial positive charge on adjacent N-atoms there is a repulsion along N  N bond, hence N  N bond distance become higher.
parallel
General
maths-

If a,b,c,d are consective binomial coefficients of left parenthesis 1 plus x right parenthesis to the power of n then fraction numerator a plus b over denominator a end fraction comma fraction numerator b plus c over denominator b end fraction comma fraction numerator c plus d over denominator c end fraction are is

If a,b,c,d are consective binomial coefficients of left parenthesis 1 plus x right parenthesis to the power of n then fraction numerator a plus b over denominator a end fraction comma fraction numerator b plus c over denominator b end fraction comma fraction numerator c plus d over denominator c end fraction are is

maths-General
General
maths-

No of terms whose value depend on 'x' is left parenthesis x squared minus 2 plus 1 divided by x squared right parenthesis to the power of n is

B a open parentheses N subscript 3 end subscript close parentheses subscript 2 end subscript stack ⟶ with capital delta on top B a plus 3 N subscript 2 end subscript

No of terms whose value depend on 'x' is left parenthesis x squared minus 2 plus 1 divided by x squared right parenthesis to the power of n is

maths-General
B a open parentheses N subscript 3 end subscript close parentheses subscript 2 end subscript stack ⟶ with capital delta on top B a plus 3 N subscript 2 end subscript
General
Maths-

If T subscript 0 comma T subscript 1 comma T subscript 2 comma horizontal ellipsis. T subscript n represent the terms is left parenthesis x plus a right parenthesis to the power of n then left parenthesis T subscript 0 minus T subscript 2 plus T subscript 4 minus T subscript 6 plus midline horizontal ellipsis right parenthesis squared plusleft parenthesis T subscript 1 minus T subscript 3 plus T subscript 5 minus horizontal ellipsis right parenthesis squared  is

If T subscript 0 comma T subscript 1 comma T subscript 2 comma horizontal ellipsis. T subscript n represent the terms is left parenthesis x plus a right parenthesis to the power of n then left parenthesis T subscript 0 minus T subscript 2 plus T subscript 4 minus T subscript 6 plus midline horizontal ellipsis right parenthesis squared plusleft parenthesis T subscript 1 minus T subscript 3 plus T subscript 5 minus horizontal ellipsis right parenthesis squared  is

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.