Chemistry-
General
Easy

Question

Westrosol is

  1. Cl2CF2

The correct answer is:

Related Questions to study

General
chemistry-

Consider the given figure showing that possible levels of the energy of H subscript 2 end subscript superscript plus end superscript ion depending on internuclear distance versus potential energy of the system .

It may be easily assumed that the ground state of the molecular hydrogen ion, H subscript 2 end subscript superscript plus end superscript corresponds to the lowest level which means that

Consider the given figure showing that possible levels of the energy of H subscript 2 end subscript superscript plus end superscript ion depending on internuclear distance versus potential energy of the system .

It may be easily assumed that the ground state of the molecular hydrogen ion, H subscript 2 end subscript superscript plus end superscript corresponds to the lowest level which means that

chemistry-General
General
chemistry-

Which bond angle blank would result in the maximum dipole moment for the triatomic molecule XY2 as shown below.

Which bond angle blank would result in the maximum dipole moment for the triatomic molecule XY2 as shown below.

chemistry-General
General
physics-

A long rubber tube having mass 0.9kg is fastened to a fixed support and the free end of the tube is attached to a chord which passes over a pulley and supports an object, with a mass of 5kg as shown in figure. If the tube is struck by a transverse blow at one end, the time required for the pulse to reach the other end is

A long rubber tube having mass 0.9kg is fastened to a fixed support and the free end of the tube is attached to a chord which passes over a pulley and supports an object, with a mass of 5kg as shown in figure. If the tube is struck by a transverse blow at one end, the time required for the pulse to reach the other end is

physics-General
parallel
General
physics-

A plane progressive wave is shown in the adjoining phase diagram. The wave equation of this wave, if its position is shown at t=0, is

A plane progressive wave is shown in the adjoining phase diagram. The wave equation of this wave, if its position is shown at t=0, is

physics-General
General
physics-

A rod PQ of length ‘L’ is hung from two identical wires A and B. A block of mass ‘m’ is hung at point R of the rod as shown in figure. The value of ‘x’ so that the fundamental mode in wire A is in resonance with first overtone of B is

A rod PQ of length ‘L’ is hung from two identical wires A and B. A block of mass ‘m’ is hung at point R of the rod as shown in figure. The value of ‘x’ so that the fundamental mode in wire A is in resonance with first overtone of B is

physics-General
General
physics-

The length of the wire shown in figure between the pulley is 1.5m and its mass is 12 gm. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest

The length of the wire shown in figure between the pulley is 1.5m and its mass is 12 gm. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest

physics-General
parallel
General
physics-

In a sonometer wire, the tension is maintained by suspending a 20kg mass from the free end of the wire. The fundamental frequency of vibration is 300 Hz

If the tension is provided by two masses of 6kg and 14kg suspended from a pulley as show in the figure the fundamental frequency will

In a sonometer wire, the tension is maintained by suspending a 20kg mass from the free end of the wire. The fundamental frequency of vibration is 300 Hz

If the tension is provided by two masses of 6kg and 14kg suspended from a pulley as show in the figure the fundamental frequency will

physics-General
General
physics-

A train A crosses a station with a speed of 40 m/ s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z. Another train B is approaching towards the same station with the same speed along a parallel track. Two tracks are d = 99m apart. When train A whistles, train B is 152m away from the station as shown in fig. If velocity of sound in air v equals 330 m divided by s, calculate frequency of the pulse heard by driver of train B

A train A crosses a station with a speed of 40 m/ s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z. Another train B is approaching towards the same station with the same speed along a parallel track. Two tracks are d = 99m apart. When train A whistles, train B is 152m away from the station as shown in fig. If velocity of sound in air v equals 330 m divided by s, calculate frequency of the pulse heard by driver of train B

physics-General
General
physics-

Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line OA in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line OB. If the frequency of P is 341 Hz, the frequency of Q will be ___

Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line OA in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line OB. If the frequency of P is 341 Hz, the frequency of Q will be ___

physics-General
parallel
General
physics-

AB is a cylinder of length 1m fitted with a thin flexible diaphragm C at middle and two other thin flexible diaphragms A and B at the ends as shown. The portions AC and BC contain hydrogen and oxygen gases respectively. The diaphragms A and B are set into vibrations of the same frequency. The minimum frequency of these vibrations for which diaphragm C is a node is (Under the conditions of the experiment the velocity of sound in hydrogen is 1100 m/s and oxygen 300 m/s)

AB is a cylinder of length 1m fitted with a thin flexible diaphragm C at middle and two other thin flexible diaphragms A and B at the ends as shown. The portions AC and BC contain hydrogen and oxygen gases respectively. The diaphragms A and B are set into vibrations of the same frequency. The minimum frequency of these vibrations for which diaphragm C is a node is (Under the conditions of the experiment the velocity of sound in hydrogen is 1100 m/s and oxygen 300 m/s)

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling A particle is dropped from the ceiling at the same instant the bottom end is given the jerk. where will the particle meet the pulse measured from bottom?

A heavy but uniform rope of length L is suspended from a ceiling A particle is dropped from the ceiling at the same instant the bottom end is given the jerk. where will the particle meet the pulse measured from bottom?

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

A heavy but uniform rope of length L is suspended from a ceiling If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

physics-General
parallel
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

A heavy but uniform rope of length L is suspended from a ceiling Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

physics-General
General
physics-

A detector is moving in a circular path of radius r in anti-clock wise direction with a constant angular velocity w as shown in the figure. At time t=0, it starts from the location shown at A, assuming source at rest. The time interval between minimum and maximum frequency as received by the detector

A detector is moving in a circular path of radius r in anti-clock wise direction with a constant angular velocity w as shown in the figure. At time t=0, it starts from the location shown at A, assuming source at rest. The time interval between minimum and maximum frequency as received by the detector

physics-General
General
physics-

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity w as shown in the figure. At time t=0, it starts from the location shown at A, assuming source at rest. The time at which the detector will hear the maximum frequency for the 1st time

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity w as shown in the figure. At time t=0, it starts from the location shown at A, assuming source at rest. The time at which the detector will hear the maximum frequency for the 1st time

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.