Series JSK / 1

Set No. 4

Roll No.



Question Paper Code 031/1/4

Candidates must write the Questions Paper Code in the space allotted in the OMR Sheet

| NO   | NOTE:                                                                                                                                                       |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| i)   | Please check that this question paper contains printed pages                                                                                                |  |  |
| ii)  | Question Paper Code given on the top right-hand side of the question paper<br>should be written in the appropriate place in the OMR Sheet by the candidate. |  |  |
| iii) | Please check that this question paper contains 50 Multiple choice questions (MCQs)                                                                          |  |  |
| iv)  | 20 minutes additional time has been allotted to read this question paper prior to actual time of commencement of the examination.                           |  |  |

# MATHEMATICS (Theory) Term-I

## Time allowed: 90 minutes

Section - A

Maximum Marks: 40

turito

(D) 3549

Questions no. 1 to 20 are of 1 mark each. Answer any 16 questions from Q. No. 1 - 20. 16X1=16

- 1. If HCF (39,91) = 13, then LCM (39,91) is: (A) 91 (B) 273 (C) 39
- 2. 4. 57 is a/an:
  (A) integer
  (B) rational number
  (C) natural number
  (D) irrational number
- 3. The line represented by 4x 3y = 9 intersects the y-axis at: (A) (0, -3) (B)  $\left(\frac{9}{4}, 0\right)$  (C) (-3, 0) (D)  $\left(0, \frac{9}{4}\right)$
- 4. The point on x-axis equidistant from the points P(5,0) and Q(-1,0) is: (A) (2,0) (B) (-2,0) (C) (3,0) (D) (2,2)



(A)  $\frac{\sqrt{3}}{2}$  p (B)  $\frac{\sqrt{3}}{4}$  p (C)  $\frac{\sqrt{3}}{2}$  p<sup>2</sup> (D)  $\frac{\sqrt{3}}{4}$  p<sup>2</sup>



- 17. Given that  $\sin \theta = \frac{p}{q}$ ,  $\tan \theta$  is equal to: (A)  $\frac{p}{\sqrt{p^2 - q^2}}$  (B)  $\frac{q}{\sqrt{p^2 - q^2}}$  (C)  $\frac{p}{\sqrt{q^2 - p^2}}$  (D)  $\frac{q}{\sqrt{q^2 - p^2}}$
- 18. A vertical pole of length 19 m casts a shadow 57 m long on the ground and at the same time a tower casts a shadow 51 m long. The height of the tower is:
  (A) 171 m
  (B) 13 m
  (C) 17 m
  (D) 117 m
- 19. The simplest form of  $\sqrt{(1 \cos^2 \theta)(1 + \tan^2 \theta)}$  is: (A)  $\cos \theta$  (B)  $\sin \theta$  (C)  $\cot \theta$  (D)  $\tan \theta$
- 20. In the given figure,  $\angle ABC$  and  $\angle ACB$  are complementary to each other and  $AD \perp BC$ . Then,



## Section -B

Questions no. 21 to 90 are of 1 mark each. Answer any 16 questions from Q. No. 21–40. 16x1=16

21. If one of the zeroes of a quadratic polynomial  $(k - 1)x^2 + kx + 1$  is -3, then the value of k is : (A)  $\frac{4}{3}$  (B)  $-\frac{4}{3}$  (C)  $\frac{2}{3}$  (D)  $-\frac{2}{3}$ 

22. If the lengths of diagonals of a rhombus are 10 cm and 24 cm, then the perimeter of the rhombus is:
(A) 13 cm
(B) 26 cm
(C) 39 cm
(D) 52 cm

23. In the given figure, x expressed in terms of a, b, c, is:





| 25. | If ' n ' is any natural number, then $(12)^n$ cannot end with the digit: |       |       |       |
|-----|--------------------------------------------------------------------------|-------|-------|-------|
|     | (A) 2                                                                    | (B) 4 | (C) 8 | (D) 0 |

26. A wire can be bent in the form of a circle of radius 56 cm. If the same wire is bent in the form of a square, then the area of the square will be:

| (A) 8800 cm <sup>2</sup> | (B) 7744 cm <sup>2</sup> | (C) 6400 cm <sup>2</sup> | (D) 3520 cm <sup>2</sup> |  |
|--------------------------|--------------------------|--------------------------|--------------------------|--|
|                          |                          |                          |                          |  |

- 27. The probability that a non-leap year has 53 Wednesdays, in (B)  $\frac{2}{7}$ (C)  $\frac{5}{7}$ (D)  $\frac{6}{7}$ (A)  $\frac{1}{7}$
- 28. In the given figure, points A, B, C and D are concyclic and  $\angle CBE = 130^{\circ}$ . Then  $\angle FDC$  is:



(B)7:2 (A)2:5 (C)2:7

turito

37. If  $sin^2 \theta + sin \theta = 1$  then the value of  $cos^2 \theta + cos^4 \theta = 1$  is:

|     | (A)-1                                                                     | (B)1                                          | (C)0                           | (D)2                                  |
|-----|---------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------|
| 38. | The decimal expansion of                                                  | $\frac{43}{162}$ :                            |                                |                                       |
|     | (A)is terminating                                                         |                                               |                                |                                       |
|     | (B)is non - terminating and non-recurring                                 |                                               |                                |                                       |
|     | (C)is non - terminating and recurring                                     |                                               |                                |                                       |
|     | (D) does not existing                                                     |                                               |                                |                                       |
| 39. | If the circumference of a c<br>(A)three times                             | ircle is tripled, then its a<br>(B)nine times | rea becomes.<br>(C)eight times | (D) two times                         |
| 40. | A father is three times as o<br>sum of the present ages o<br>(A) 36 years | •                                             |                                | s old as his son. The<br>(D) 42 years |

## SECTION -C

(Case Study Based Questions)

Section C consists of 10 questions of 1 mark each. Attempt any 8 questions from Q.No.41-50. 8x1 =8

### Case Study -I

A car moves on a highway. The path it traces is given below:



Based on the above information, answer the following questions:

| 41. | What is the shape of the c<br>(A)Parabola         | urve EFG?<br>(B)Ellipse         | (C)Straight line                 | (D) Circle        |
|-----|---------------------------------------------------|---------------------------------|----------------------------------|-------------------|
| 42. | If the curve ABC is represe                       | ented by the polynomial         | $-(x^2+4x+3)$ , then its         | zeroes are:       |
|     | (A)1 and -3                                       | (B)-1 and 3                     | (C)1 and 3                       | (D) -1 and -3     |
| 43. | If the path traced by the ca<br>(A) $x^2 + x + 2$ |                                 |                                  | (D) $x^2 + x - 2$ |
| 44. | The number of zeroes of the (A)4                  | he polynomial represent<br>(B)3 | ing the whole curve, is:<br>(C)2 | (D)1              |
| 45. | The distance between C ar                         | ( )                             | (-)-                             | (-/-              |

(A)4 units (B)6 units (C)8 units (D) 7 units



#### Case Study -II

Shivani is an interior decorator. To design her own living room, she designed wall shelves. The graph of intersecting wall shelves is given below:



(D) I(-2,0), J(-2,-6), K(-8,-6), L(-8,-2)

