1. We know $a \times b=\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)$
(where a, b are positive integer)
$39 \times 91=\operatorname{HCF}(39,91) \times \operatorname{LCM}(39,91)$
$\operatorname{LCM}(39,91)=\frac{39 \times 91}{13}=3 \times 91=273$
2. $\overline{4.57}$

The decimals are repeating and non - terminating (Option -b)
3. X - coordinate of any point lying on Y - axis is " 0 "

Substituting $x=0$ in the given line $4 x-3 y=9$

$$
\begin{aligned}
& 4(0)-3(y)=9 \\
& -3 y=9 \\
& -3 y=9 \quad \Rightarrow y=-3
\end{aligned}
$$

Line $4 x-3 y=9$ intersect y - axis at $(0,-3)$
(Option -a)
4. let $R(x .0)$ be the point tying on x - axis and equidistant from points $P(5,0)$ and $Q(-1,0)$

Equation $P R=R Q$
$\sqrt{(x-5)^{2}+(0-0)^{2}}=\sqrt{(x+1)^{2}+(0-0)^{2}}$
$(x-5)^{2}=(x+1)^{2} \quad$ (squaring on both sides)
$x^{2}-10 x+25=x^{2}+2 x+1$
$-12 x=-24$
$x=2$
Required point is $(2,0)$
(option-a)
5. Given $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ similar

Which implies $\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R$

$$
\begin{aligned}
& \angle R=69^{\circ} \\
& \therefore \angle Q=180^{\circ}-(\angle P+\angle R) \\
& \angle Q=180^{\circ}-\left(31^{\circ}+69^{\circ}\right)=180^{\circ}-\left(100^{\circ}\right)=80^{\circ}
\end{aligned}
$$

(option - d)
6. Given $\cos \theta=\frac{\sqrt{8}}{2} \quad \Rightarrow \cos ^{2} \theta=\frac{3}{4}$

$$
\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cose}^{2} \theta+\sec ^{2} \theta}=\frac{\frac{1}{\sin ^{2} \theta}-\frac{1}{\cos ^{2} \theta}}{\sin ^{2} \theta+\frac{1}{\cos ^{2} \theta}} \quad\left(\cos \theta=\frac{1}{\sin \theta} \text { and } \cos \theta=\frac{1}{\operatorname{se}}\right)
$$

$$
\begin{aligned}
& \left(\frac{\frac{1}{1-\cos ^{2} \theta}-\frac{1}{\cos ^{2} \theta}}{\frac{1}{1-\cos ^{2} \theta}+\frac{1}{\cos ^{2} \theta}}\right)=\frac{\frac{1}{\left(1-\frac{3}{4}\right)}-\frac{1}{\left(\frac{3}{4}\right)}}{\frac{1}{\left(1-\frac{3}{4}\right)}+\frac{1}{\left(\frac{3}{4}\right)}} \\
& \frac{\frac{1}{(1 / 4)}-\frac{1}{(3 / 4)}}{\frac{1}{(1 / 4)}+\frac{1}{(3 / 4)}}=\frac{4-\frac{4}{3}}{4+\frac{4}{3}}=\frac{\frac{12-4}{3}}{\frac{12+4}{3}}=\frac{8}{16}=\frac{1}{2}
\end{aligned}
$$

(Option -c)
7.

In 10 min minute hand covers 60°
Are of sector $=\frac{\theta}{360} \times \pi r^{2}$
(θ is in degree)
$\frac{60}{360} \times \frac{22}{7} \times 7 \times 7=\frac{154}{6}=\frac{77}{3}$
$=25 \frac{2}{3} \mathrm{~cm}^{2}$
(Option -d)
8. When a coin is tossed the possible outcomes are
\{HH, HT, TH, TT \}
probability of two heads is $1 / 4$
9. product of two numbers $=6336$ (given)

Given HCF is 12 so two numbers are $12 x$ and $12 y$
Where x, y are coprimes
$(12 x) \times(12 y)=6336$
$x y=44$
possible coprimes are $(1,44)$ and $(4,11)$
$(2,22)$ is not considered as they are not coprimes
10. $y=2$ and $y=-3$ are parallel lines

Two parallel lines have no common point. Hence no solution
11. From Basic proportionality theorem $\frac{C P}{P A}=\frac{C Q}{Q B}$
$\frac{x+3}{3 x+19}=\frac{x}{3 x+4} \Rightarrow(x+3)(3 x+2)=x(3 x+19)$
$\Rightarrow 3 \mathrm{x}^{2}+4 \mathrm{x}+4 \mathrm{x}+12=3 \mathrm{x}^{2}+19 \mathrm{x}$
$\Rightarrow 13 \mathrm{x}+12=19 \mathrm{x}$
$\Rightarrow 6 \mathrm{x}=12 \Rightarrow \mathrm{x}=2$
12. Given $\sin \alpha=\frac{\sqrt{3}}{2} \Rightarrow \alpha=60^{\circ}$

Given $\tan \beta=\frac{1}{\sqrt{3}} \Rightarrow \beta=30^{\circ}$
$\cos (\alpha-\beta)=\cos (60-30)=\cos (30)=\frac{\sqrt{3}}{2}$
13. possible outcomes of a dice are $\{1,2,3,4,5,6\}$

4, 6 are composite
Probability of composite outcome is $=\frac{2}{6}=1 / 5$
14. $250=2^{\circ} \times 5^{3}$ (highest power among 2 and 5 is 3)
decimal terminate after 3 decimal places
15. Given lines are $3 x+2 y=7$ and $4 x+8 y-11=0$

$$
\text { clearly } \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \quad \text { as } \quad \frac{3}{4} \neq \frac{2}{8}
$$

16.

Let AD be the altitude
In equilateral $\Delta^{l e}$ the altitude acts as perpendicular bisector of BC and applying Pythagoras theorem in $\triangle A B D$

$$
\begin{aligned}
& P^{2}=\left(\frac{P}{2}\right)^{2}+x^{2} \\
& P^{2}=\frac{P^{2}}{4}+x^{2} \\
& x^{2}=\frac{3 P^{2}}{4} \Rightarrow x=\frac{\sqrt{3} P}{2}
\end{aligned}
$$

17. Given $\sin \theta=\frac{p}{q}, \tan \theta=$?

$$
\sin \theta=\frac{\text { opp }}{\text { hypotenus }} \Rightarrow p \underbrace{q}_{\theta \lambda}
$$

$$
\tan \theta=\frac{o p p}{a d j} \quad\left(\text { adjacentside }=\sqrt{q^{2}-p^{2}}[\because \text { by pythagoras theorem }]\right)
$$

$$
\Rightarrow \frac{P}{\sqrt{q^{2}-p^{2}}}
$$

18.

2 triangles are similar
$\Rightarrow \frac{51}{57}=\frac{x}{19} \Rightarrow x=17 m$
19. $\sqrt{\left(1-\cos ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)}$

From trigonometric identities
$1-\cos ^{2} \theta=\sin ^{2} \theta$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\Rightarrow \sqrt{\sin ^{2} \theta \cdot \sec ^{2} \theta}$
But $\sec \theta=\frac{1}{\cos \theta}$
$\Rightarrow \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}=\frac{\sin \theta}{\cos \theta}=\tan \theta$
20.

Given $\angle A B C+\angle A C B=90^{\circ}$
$\Rightarrow \angle B A C=90^{\circ}$
Now comparing
$\triangle A B D$ and $\triangle C A D$
$\angle B A D=\angle A C D$
$\angle A B D=\angle A C D$
$\angle A D B=\angle C D A$
\Rightarrow AAA similarity
$\triangle A B D \sim \angle C A D$
$\Rightarrow \frac{B D}{A D}=\frac{A D}{C D}$
$\Rightarrow B D . C D=A D^{2}$
[complimentary]
[Angle sum property of triangle]
[from figure]
[from figure]
[Right angle]
[By CPCT]
21. Given one root is -3
$(k-1) x^{2}+k x+1=0$ should be satisfied when $\mathrm{x}=-3$
$\Rightarrow 9(k-1)-3 k+1=0$
$9 k-9-3 k+1=0$

$$
k=\frac{8}{6}=\frac{4}{3}
$$

A
22.

We know the diagonals bisect perpendicularly in rhombus

$$
\begin{array}{ll}
\Rightarrow A O=O C=5 & {[\because A C=10]} \\
\Rightarrow B O=O D=12 & {[\because B D=24]}
\end{array}
$$

Now applying Pythagoras theorem in $\triangle A O D$
$5^{2}+12^{2}=\mathrm{AD}^{2} \Rightarrow A D=\sqrt{169}=13 \mathrm{~cm}$
Perimeter $=13+13+13+13=52 \mathrm{~cm}$
23.

$\triangle P Q R$ is similar to $\triangle S T R$
$\angle P Q R=\angle S T R \rightarrow$ Given
$\angle P R Q=\angle S R Q \rightarrow$ Common angle
By AA Similarity
$\triangle P Q R \sim \triangle S T R$
$\Rightarrow \frac{T R}{Q R}=\frac{S T}{P Q}$
$\Rightarrow \frac{c}{b+c}=\frac{x}{a}$
$\Rightarrow x=\frac{a c}{b+c}$
24. $\frac{1}{\operatorname{cosec} \theta(1-\cot \theta)}+\frac{1}{\sec \theta(1-\tan \theta)}$

$$
\begin{array}{ll}
\Rightarrow \frac{\sin \theta}{\left(1-\frac{\cos \theta}{\sin \theta}\right)}+\frac{\cos \theta}{\left(1-\frac{\sin \theta}{\cos \theta}\right)} & {\left[\begin{array}{ll}
\operatorname{cosec} \theta=\frac{1}{\sin \theta} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\sec \theta=\frac{1}{\cos \theta} & \cos \theta=\frac{\cos \theta}{\sin \theta}
\end{array}\right]} \\
\Rightarrow \frac{\sin ^{2} \theta}{(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{(\cos \theta-\sin \theta)} & \\
\Rightarrow \frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta-\cos \theta} \Rightarrow(\sin \theta+\cos \theta) & \because \mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})
\end{array}
$$

25. (12) ${ }^{\mathrm{n}}$ does not end with 0 because there is no ' 5 ' in the units digit
26. Given a wire is bent in to circle of radius 56 cm
\Rightarrow Length of wire $=2 \times \frac{22}{7} \times 56$

$$
=2 \times 22 \times 8
$$

When it is bent into square of side ' r '

$$
\begin{aligned}
& 4(\ell)=2 \times 22 \times 8 \\
& \Rightarrow \ell=4 \times 22 \mathrm{~cm}=88 \mathrm{~cm}
\end{aligned}
$$

Area of square $=\ell^{2}=88^{2}=7744 \mathrm{~cm}^{2}$
27. For a non leap year

365 days $\Rightarrow 52$ weeks +1 day this can be any day
\Rightarrow Wednesday $\Rightarrow \frac{1}{7}$
28. A, B, C, D are concyclic \Rightarrow Opposite angles are supplementary

If $\angle \mathrm{CBE}=130^{\circ} ; \angle \mathrm{CBA}=50^{\circ}(\because$ Linear pair $)$
And since A, B, C, D are concyclic
$\angle \mathrm{CDA}+\angle \mathrm{CBA}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDA}=180^{\circ}-50^{\circ}=130^{\circ}$
$\Rightarrow \angle \mathrm{CDF}+\angle \mathrm{CDA}=180^{\circ} \quad[\because$ Linear pair $]$
$\Rightarrow \angle \mathrm{CDF}+130^{\circ}=180^{\circ}$
$\angle \mathrm{CDF}=50^{\circ}$
29. x-coordinate of a point $=2$ times its ' y ' coordinate
$\Rightarrow \mathrm{x}=2 \mathrm{y}$ and \Rightarrow point $=\mathrm{P}(2 \mathrm{y}, \mathrm{y})$
and it is equidistant from $Q(2,-5)$ and $R(-3,6)$
$\Rightarrow(2 y-2)^{2}+(y+5)^{2}=(2 y+3)^{2}+(y-6)^{2}$
$\Rightarrow 4 y^{2}+4-8 y+y^{2}+10 y+25=4 y^{2}+9+12 y+y^{2}+36-12 y$
$2 y+29=45$
$2 \mathrm{y}=16$
$\mathrm{y}=8 \Rightarrow$ Point $\mathrm{P}=(16,8)$

30. Circle equation $(x-0)^{2}+(y-0)^{2}=5^{2}$
$\mathrm{x}^{2}+\mathrm{y}^{2}=25$
Given ($x, 4$) lies on circle
$\Rightarrow \mathrm{x}^{2}+16=25$

$$
\begin{aligned}
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

31. $2 \sin 2 \theta=1$
$\sin 2 \theta=\frac{1}{2}$
We know that,
$\sin 30^{\circ}=\frac{1}{2}$
$\therefore \sin 2 \theta=\sin 30^{\circ}$
$\therefore 2 \theta=30^{\circ} \Rightarrow \theta=15^{\circ}$
32. Prime factor of $385=5 \times 77$

$$
=5 \times 7 \times 11
$$

33. We have,

$$
2 \pi r-r=111
$$

$\therefore r(2 \pi-1)=111$
$\therefore \mathrm{r}=\frac{111}{2 \pi-1}=\frac{111}{\frac{44}{7}-1}=\frac{777}{37}=21$
We know that,
Area of circle $=\pi r^{2}$

$$
=\frac{22}{7} \times 21 \times 21=1386 \mathrm{~cm}
$$

34. $S=\{M, A, N, G, O\}$
$n(s)=5$
Let A be the event of selecting a vowel

$$
\therefore \mathrm{A}=\{\mathrm{A}, \mathrm{O}\} \Rightarrow \mathrm{n}(\mathrm{~A})=2
$$

$\therefore \mathrm{P}(\mathrm{A})=\frac{2}{5}$
35. $17 x-19 y=53$
$19 x-17 y=55$
Subtracting equation (2) from equation (1)
$17 x-19 y=53$
$19 x-17 y=55$

$$
-2 x-2 y=-2
$$

$-2(x+y)=-2$
$x+y=1$
36.

By section formula,
$(-4,6)=\left(\frac{\mathrm{m}(3)+\mathrm{n}(-6)}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{m}(-8)+\mathrm{n}(10)}{\mathrm{m}+\mathrm{n}}\right)$
Let the ration be $\mathrm{k}: 1$
$\therefore-4=\frac{3 \mathrm{k}-6}{\mathrm{k}+1}$;
$6=\frac{-8 k+10}{k+1}$
$-4 \mathrm{k}-4=3 \mathrm{k}-6$;
$6 k+6=-8 k+10$
$2=7 \mathrm{k}$
$\mathrm{k}=\frac{2}{7}$
$14 \mathrm{k}=4$
$\mathrm{k}=\frac{2}{7}$
37. $\sin ^{2} \theta+\sin \theta=1$
(1)

We know that

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \therefore \sin ^{2} \theta=1-\cos ^{2} \theta
\end{aligned}
$$

Equation (1)
$1-\cos ^{2} \theta+\sin ^{2} \theta=1$
$-\cos ^{2} \theta=-\sin ^{2} \theta$
$\therefore \sin ^{2} \theta=\cos ^{2} \theta$
Squaring we get
$\sin ^{2} \theta=\cos ^{4} \theta$
$\therefore 1-\cos ^{2} \theta=\cos ^{4} \theta$
$\therefore \cos ^{4} \theta+\cos ^{2} \theta=1$
38. Non terminating and recurring
39. Let $\mathrm{C}_{\mathrm{i}}=2 \pi \mathrm{r}_{\mathrm{i}} \& \mathrm{C}_{\mathrm{f}}=2 \pi \mathrm{r}_{\mathrm{f}}$

Also, $2 \pi r_{f}=3\left(2 \pi r_{i}\right)$

$$
r_{f}=3 r_{i}
$$

Now, $A_{f}=\pi r_{f}^{2}$

$$
\begin{aligned}
& =\pi\left(3 r_{i}\right)^{2} \\
& =9 \pi r_{\mathrm{i}}^{2}
\end{aligned}
$$

40. Let the present age of Father be ' x ' year \& that of his son's be ' y ' years
\therefore we have
$x=3 y$
After 12 years, Father's age will be $(x+12)$ \& son's age will be $(y+12)$
\therefore We get
$x+12=2(y+12)$
$x+12=2 y+24$
$x-2 y=12$
From (1) we get
$3 y-2 y=12$
$\therefore \mathrm{y}=12$
Using equation (1)
$\mathrm{x}=36$
\therefore Sum of their present ages is
$36+12=48$
41. As it is looking like parabola is the figure.. If is parabola.
42. The curve ABC is touching x -axis at $-3,-1$
\Rightarrow They are zeroes of the polynomial
43. Quadratic equation whose roots are α and β is $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
44. The curve is touching x axis at 4 points \Rightarrow Zeroes are 4
45. Distance between $\mathrm{C} \& \mathrm{G} \Rightarrow \mathrm{C}(-1,0), \mathrm{G}=(5,0)$
$\Rightarrow \sqrt{(5-(-1))^{2}+(0-0)^{2}}=6$
46. By plotting coordination $\Rightarrow S=(-6,4)$
47. From Graph $D=(-2,-4), H=(8,2)$

$$
\text { Midpoint }=\left(\frac{8-2}{2}, \frac{2-4}{2}\right) \Rightarrow(3,-1)
$$

48. x -axis divides the points in the ratio $-\mathrm{y}_{1}: \mathrm{y}_{2}$

$$
\Rightarrow-(4):-4 \Rightarrow 1: 1
$$

49. Distance between P \& G P(-6, -4$), G=(8,6)$

$$
\Rightarrow \sqrt{14^{2}+10^{2}}=\sqrt{296}=2 \sqrt{74}
$$

50. From graph is clear that

$$
\mathrm{I}(2,-2), \mathrm{J}(2,-6), \mathrm{K}(8,-6), \mathrm{L}(8,-2)
$$

