Question

# If then the numerical value of is equal to

- -1
- 0
- 1
- 2

Hint:

### In this question, we have to find the numerical value of if First we will find the value of alpha, then substitute in the last values to find the simplified form of the terms. Later, put it in the in the given equation and solve to find the required numerical value.

## The correct answer is: 1

### Related Questions to study

### =

### =

### =

### =

### In the figure QS and RS are the bisectors of and respectively then

### In the figure QS and RS are the bisectors of and respectively then

### If AB=AC and then

Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle A is 50 degree.

### If AB=AC and then

Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle A is 50 degree.

### In the figure then ACD=

Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.

### In the figure then ACD=

Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.

### =

### =

### If and then =

### If and then =

### If then

### If then

### The minimum value is

### The minimum value is

### In the adjoining figure, and then

Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle b+c is 90 degrees.

### In the adjoining figure, and then

Here we used the concept of linear pair. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle b+c is 90 degrees.

### In the figure, and then the value of x =

Here we used the concept of angles on same side of transversal. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the value of x is 16.

### In the figure, and then the value of x =

Here we used the concept of angles on same side of transversal. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the value of x is 16.

### In the following figure, the value of x =

Here we used the concept of linear pair and exterior angle property. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle BCD is 110 degrees.

### In the following figure, the value of x =

### Using information given in the following figure, the value of x and y is

Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angles are 65°and 110°.

### Using information given in the following figure, the value of x and y is

Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angles are 65°and 110°.

### In figure, the sides QP and RQ of are produced to points S and T respectively. If and then

Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle PRQ is 65 degrees.

### In figure, the sides QP and RQ of are produced to points S and T respectively. If and then

Here we used the concept of linear pair and angle sum property of a triangle. When two lines cross at one point, a linear pair of angles is created. If the angles follow the intersection of the two lines in a straight line, they are said to be linear. A linear pair's total angles are always equal to 180°. So here the angle PRQ is 65 degrees.