Maths-
General
Easy

Question

If 2 tan invisible function application A equals 3 tan invisible function application B comma then fraction numerator sin invisible function application 2 B over denominator 5 minus cos invisible function application 2 B end fractionis equal to

  1. tan invisible function application A minus tan invisible function application B    
  2.  tan invisible function application A plus tan invisible function application B    
  3. tan invisible function application left parenthesis A plus B right parenthesis    
  4. tan invisible function application left parenthesis A plus 2 B right parenthesis    

The correct answer is: tan invisible function application A plus tan invisible function application B


    2 tan invisible function application capital alpha equals 3 tan invisible function application B
    Þ tan invisible function application A equals fraction numerator 3 over denominator 2 end fraction tan invisible function application B equals fraction numerator 3 over denominator 2 end fraction t, [Let tan invisible function application B equals t]
    Þ sin invisible function application 2 B equals fraction numerator 2 t over denominator 1 plus t to the power of 2 end exponent end fraction comma cos invisible function application 2 B equals fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction
    \ fraction numerator open parentheses fraction numerator 2 t over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses over denominator 5 minus open parentheses fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses end fraction equals fraction numerator 2 t over denominator 4 plus 6 t to the power of 2 end exponent end fraction equals fraction numerator t over denominator 2 plus 3 t to the power of 2 end exponent end fraction equals tan invisible function application left parenthesis A minus B right parenthesis.

    Related Questions to study

    General
    maths-

    Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
    Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| not equal to0, then X = A–1B

    Statement-I : If A & B are two 3×3 matrices such that AB = 0, then A = 0 or B = 0
    Statement-II : If A, B & X are three 3×3 matrices such that AX = B, |A| not equal to0, then X = A–1B

    maths-General
    General
    maths-

    Assertion (A): The inverse of the matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets does not exist.
    Reason (R) : The matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets is singular. [becauseopen vertical bar table row 1 3 5 row 2 6 10 row 9 8 7 end table close vertical bar = 0, since R2 = 2R1]

    Assertion (A): The inverse of the matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets does not exist.
    Reason (R) : The matrix open square brackets table row 1 3 5 row 2 6 10 row 9 8 7 end table close square brackets is singular. [becauseopen vertical bar table row 1 3 5 row 2 6 10 row 9 8 7 end table close vertical bar = 0, since R2 = 2R1]

    maths-General
    General
    maths-

    Assertion (A): open square brackets table row 5 0 0 row 0 3 0 row 0 0 9 end table close square brackets is a diagonal matrix
    Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i not equal to j.

    Assertion (A): open square brackets table row 5 0 0 row 0 3 0 row 0 0 9 end table close square brackets is a diagonal matrix
    Reason (R) : A square matrix A = (aij) is a diagonal matrix if aij = 0 for all i not equal to j.

    maths-General
    parallel
    General
    maths-

    Consider open vertical bar table row cell a subscript 1 end subscript end cell cell b subscript 1 end subscript end cell cell c subscript 1 end subscript end cell row cell a subscript 2 end subscript end cell cell b subscript 2 end subscript end cell cell c subscript 2 end subscript end cell row cell a subscript 3 end subscript end cell cell b subscript 3 end subscript end cell cell c subscript 3 end subscript end cell end table close vertical bar= – 1, where ai. aj + bi. bj + ci.cj = open square brackets table row cell 0 semicolon end cell cell i not equal to j end cell row cell 1 semicolon end cell cell i equals j end cell end table close and i, j = 1,2,3
    Assertion(A) : The value of open vertical bar table row cell a subscript 1 end subscript plus 1 end cell cell b subscript 1 end subscript end cell cell c subscript 1 end subscript end cell row cell a subscript 2 end subscript end cell cell b subscript 2 end subscript plus 1 end cell cell c subscript 2 end subscript end cell row cell a subscript 3 end subscript end cell cell b subscript 3 end subscript end cell cell c subscript 3 end subscript plus 1 end cell end table close vertical bar is equal to zero
    Reason(R) : If A be square matrix of odd order such that AAT = I, then | A + I | = 0

    Consider open vertical bar table row cell a subscript 1 end subscript end cell cell b subscript 1 end subscript end cell cell c subscript 1 end subscript end cell row cell a subscript 2 end subscript end cell cell b subscript 2 end subscript end cell cell c subscript 2 end subscript end cell row cell a subscript 3 end subscript end cell cell b subscript 3 end subscript end cell cell c subscript 3 end subscript end cell end table close vertical bar= – 1, where ai. aj + bi. bj + ci.cj = open square brackets table row cell 0 semicolon end cell cell i not equal to j end cell row cell 1 semicolon end cell cell i equals j end cell end table close and i, j = 1,2,3
    Assertion(A) : The value of open vertical bar table row cell a subscript 1 end subscript plus 1 end cell cell b subscript 1 end subscript end cell cell c subscript 1 end subscript end cell row cell a subscript 2 end subscript end cell cell b subscript 2 end subscript plus 1 end cell cell c subscript 2 end subscript end cell row cell a subscript 3 end subscript end cell cell b subscript 3 end subscript end cell cell c subscript 3 end subscript plus 1 end cell end table close vertical bar is equal to zero
    Reason(R) : If A be square matrix of odd order such that AAT = I, then | A + I | = 0

    maths-General
    General
    maths-

    Assertion(A) : The inverse of the matrix A = [Aij]n × n where aij = 0, i greater or equal than j is B = [aij–1]n× n 
    Reason(R): The inverse of singular matrix does not exist

    Assertion(A) : The inverse of the matrix A = [Aij]n × n where aij = 0, i greater or equal than j is B = [aij–1]n× n 
    Reason(R): The inverse of singular matrix does not exist

    maths-General
    General
    maths-

    Assertion : The product of two diagonal matrices of order 3 × 3 is also a diagonal matrix
    Reason : matrix multiplicationis non commutative

    Assertion : The product of two diagonal matrices of order 3 × 3 is also a diagonal matrix
    Reason : matrix multiplicationis non commutative

    maths-General
    parallel
    General
    maths-

    Assertion : If A is a skew symmetric of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det straight A to the power of straight prime = det (–straight A to the power of straight prime)

    Assertion : If A is a skew symmetric of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det straight A to the power of straight prime = det (–straight A to the power of straight prime)

    maths-General
    General
    maths-

    Assertion : There are only finitely many 2 × 2 matrices which commute with the matrix open square brackets table row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, adj A and A–1

    Assertion : There are only finitely many 2 × 2 matrices which commute with the matrix open square brackets table row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, adj A and A–1

    maths-General
    General
    Maths-

    Statement-I The equation square root of 3 cos space x minus sin space x equals 2 has exactly one solution in [0, 2straight pi].

    Statement-II For equations of type a cos space theta plus b sin space theta equals c to have real solutions in left square bracket 0 comma 2 pi right square bracket comma vertical line c vertical line less or equal than square root of a squared plus b squared end root  should hold true.

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not , is same like assertion and reason. Here, Start solving first Statement and try to prove it . Then solve the Statement-II . Remember cos a cosb -sin a sinb = cos ( a + b ) and sin a cosb + cosa sinb = sin( a+ b) .

    Statement-I The equation square root of 3 cos space x minus sin space x equals 2 has exactly one solution in [0, 2straight pi].

    Statement-II For equations of type a cos space theta plus b sin space theta equals c to have real solutions in left square bracket 0 comma 2 pi right square bracket comma vertical line c vertical line less or equal than square root of a squared plus b squared end root  should hold true.

    Maths-General

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not , is same like assertion and reason. Here, Start solving first Statement and try to prove it . Then solve the Statement-II . Remember cos a cosb -sin a sinb = cos ( a + b ) and sin a cosb + cosa sinb = sin( a+ b) .

    parallel
    General
    maths-

    Assertion : If A is a skew symmetric matrix of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det straight A to the power of straight prime  = det (–straight A to the power of straight prime)

    Assertion : If A is a skew symmetric matrix of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det straight A to the power of straight prime  = det (–straight A to the power of straight prime)

    maths-General
    General
    maths-

    Assertion : There are only finitely many 2 × 2 matrices which commute with the matrix
    open square brackets table attributes columnalign center center columnspacing 1em end attributes row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, adj A and A–1

    Assertion : There are only finitely many 2 × 2 matrices which commute with the matrix
    open square brackets table attributes columnalign center center columnspacing 1em end attributes row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, adj A and A–1

    maths-General
    General
    maths-

    Consider the system of equationsx – 2y + 3z = –1–x + y – 2z = kx – 3y + 4z = 1
    Assertion : The system of equations has no solution for k not equal to3.and
    Reason : The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to 0, for k not equal to 3.

    Consider the system of equationsx – 2y + 3z = –1–x + y – 2z = kx – 3y + 4z = 1
    Assertion : The system of equations has no solution for k not equal to3.and
    Reason : The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to 0, for k not equal to 3.

    maths-General
    parallel
    General
    maths-

    Assertion : If a, b, c are distinct and x, y, z are not all zero given that ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 then a + b + c not equal to 0
    Reason : a2 + b2 + c2 > ab + bc + ca if a, b, c are distinct

    Assertion : If a, b, c are distinct and x, y, z are not all zero given that ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 then a + b + c not equal to 0
    Reason : a2 + b2 + c2 > ab + bc + ca if a, b, c are distinct

    maths-General
    General
    maths-

    Assertion : If A is a skew symmetric of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det A to the power of straight prime = det (–A to the power of straight prime)

    Assertion : If A is a skew symmetric of order 3 then its determinant should be zero.
    Reason : If A is square matrix then det A = det A to the power of straight prime = det (–A to the power of straight prime)

    maths-General
    General
    maths-

    Assertion : There are only finitely many 2 ×2 matrices which commute with the matrix open square brackets table row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, Adj A and A–1.

    Assertion : There are only finitely many 2 ×2 matrices which commute with the matrix open square brackets table row 1 2 row cell negative 1 end cell cell negative 1 end cell end table close square brackets
    Reason : If A is non-singular then it commutes with I, Adj A and A–1.

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.