Maths-
General
Easy

Question

If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

  1. 0    
  2. 3/5    
  3. 5/3    
  4. None    

The correct answer is: None


     f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 right parenthesis end fraction
    stack l i m with x rightwards arrow 0 below f'(x)
    stack l i m with x rightwards arrow 0 below fraction numerator open parentheses fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses x to the power of 1 divided by 3 end exponent open square brackets fraction numerator cos invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction close square brackets left parenthesis 3 x right parenthesis over denominator open parentheses fraction numerator tan to the power of – 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent. x. open parentheses fraction numerator e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses. x to the power of 1 divided by 3 end exponent end fraction
    = 3

    Book A Free Demo

    +91

    Grade*

    Related Questions to study