Question
In how many ways can six different rings be wear in four fingers?
- 6P4
- 64
- 46
- 6C4
Hint:
We will first start by finding the way in which one ring can be worn in 4 fingers. Then we will do the same for 6 rings and then using the fundamental principle of counting we will find the total ways.
The correct answer is: 46
Detailed Solution
Now, we have been given that there are 6 rings of different types and we have to find the ways in which they can be worn in 4 fingers.
Now, we know that the number of options each ring has is 4, that is each ring has 4 fingers as their possible way as it can be worn in any one of 4 fingers.
Now, similarly the other rings will have four options as it has not been mentioned in the options that there has to be at least a ring in a finger. So, each ring has four options i.e. four fingers.
Now, we know that by the fundamental principle of counting there can be
ways of wearing 6 rings.

It is important to note that we have used a basic fundamental principle of counting to find the total ways. Also, it is important to notice that each ring has 4 ways as it has not been given that each finger must have at least one ring. So, there can be 6 rings in a finger alone and remaining all the fingers empty.
Related Questions to study
How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?
How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?
The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-
The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-
Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-
Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-
Eight chairs are numbered from 1 to 8. Two women and three men wish to occupy one chair each. First women choose the chairs from amongst the chairs marked 1 to 4; and then the men select the chairs from the remaining. The number of possible arrangements is-
Eight chairs are numbered from 1 to 8. Two women and three men wish to occupy one chair each. First women choose the chairs from amongst the chairs marked 1 to 4; and then the men select the chairs from the remaining. The number of possible arrangements is-
A tea party is arranged of 16 persons along two sides of a long table with 8 chairs on each side. 4 men wish to sit on one particular side and 2 on the other side. In how many ways can they be seated ?</span
There are 16 people for the tea party.
People sit along a long table with 8 chairs on each side.
Out of 16, 4 people sit on a particular side and 2 sit on the other side.
Therefore first we will make sitting arrangements for those 6 persons who want to sit on some specific side.
Now we have remaining (16 - 6) =10 persons to arrange and out of 10, six people can sit on one side as only 6 seats will be reaming after making 2 people sit on one side on special demand and 4 people on other side as 4 people are already being seated on one side on special demand. (Take into consideration that one side has only 8 seats).
The number of ways of choosing 6 people out of 10 are
Now there are 4 people remaining and they will automatically place in those 4 seats available on the other side therefore total arrangement for those four people are
And now all the 16 people are placed in their seats according to the constraints.
Now we have to arrange them.
So, the number of ways of arranging 8 people out of 16 on one side and the rest 8 people on other side is(8!×8!).
So, a possible number of arrangements will be
Now as we know
So total number of arrangements is
= 210×(8! × 8!)
A tea party is arranged of 16 persons along two sides of a long table with 8 chairs on each side. 4 men wish to sit on one particular side and 2 on the other side. In how many ways can they be seated ?</span
There are 16 people for the tea party.
People sit along a long table with 8 chairs on each side.
Out of 16, 4 people sit on a particular side and 2 sit on the other side.
Therefore first we will make sitting arrangements for those 6 persons who want to sit on some specific side.
Now we have remaining (16 - 6) =10 persons to arrange and out of 10, six people can sit on one side as only 6 seats will be reaming after making 2 people sit on one side on special demand and 4 people on other side as 4 people are already being seated on one side on special demand. (Take into consideration that one side has only 8 seats).
The number of ways of choosing 6 people out of 10 are
Now there are 4 people remaining and they will automatically place in those 4 seats available on the other side therefore total arrangement for those four people are
And now all the 16 people are placed in their seats according to the constraints.
Now we have to arrange them.
So, the number of ways of arranging 8 people out of 16 on one side and the rest 8 people on other side is(8!×8!).
So, a possible number of arrangements will be
Now as we know
So total number of arrangements is
= 210×(8! × 8!)
If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-
If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-
A thin uniform annular disc (see figure) of mass
has outer radius
and inner radius
. The work required to take a unit mass from point
on its axis to infinity is

Potential at point

A thin uniform annular disc (see figure) of mass
has outer radius
and inner radius
. The work required to take a unit mass from point
on its axis to infinity is

Potential at point

The two bodies of mass
and
respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is

But
The two bodies of mass
and
respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is

But
If
to
terms,
terms,
, then 
If
to
terms,
terms,
, then 
The coefficient of
in
is
The coefficient of
in
is
Compounds (A) and (B) are – 
Compounds (A) and (B) are – 
A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:
A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:
If one root of the equation
is reciprocal of the one of the roots of equation
then
Then as per question one of the roots of the equation
Multiplying equation 1 by
putting the value in equation 1
If one root of the equation
is reciprocal of the one of the roots of equation
then
Then as per question one of the roots of the equation
Multiplying equation 1 by
putting the value in equation 1