Maths-
General
Easy

Question

Let A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses. If B is the inverse of matrix A, then alpha is

  1. – 2    
  2. – 1    
  3. 2    
  4. 5    

hintHint:

begin mathsize 14px style We space have comma
straight A space equals space open square brackets table row 1 cell negative space 1 end cell 1 row 2 1 cell negative space 3 end cell row 1 1 1 end table close square brackets space and space 10 space straight B space equals space open square brackets table row 4 2 2 row cell negative space 5 end cell 0 straight alpha row 1 cell negative space 2 end cell 3 end table close square brackets
Given space that space straight B space is space inverse space of space straight A.
therefore space AB space equals space straight I
rightwards double arrow space straight A open parentheses 10 straight B close parentheses space equals space 10 straight I
space space space space space space space space space space space space space open square brackets multiplying space by space 10 space on space both space sides close square brackets
rightwards double arrow space open square brackets table row 1 cell negative space 1 end cell 1 row 2 1 cell negative space 3 end cell row 1 1 1 end table close square brackets open square brackets table row 4 2 2 row cell negative space 5 end cell 0 straight alpha row 1 cell negative space 2 end cell 3 end table close square brackets space equals space open square brackets table row 10 0 0 row 0 1 0 row 0 0 1 end table close square brackets
rightwards double arrow space space space space space space space space space space space space space space space space space space space open square brackets table row 10 0 cell 5 space minus space straight alpha end cell row 0 10 cell straight alpha space minus space 5 end cell row 0 0 cell straight alpha space plus space 5 end cell end table close square brackets space equals space open square brackets table row 10 0 0 row 0 1 0 row 0 0 1 end table close square brackets
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight alpha space equals space 5 end style

The correct answer is: 5


    Given matrix A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses and B is the inverse of matrix A, then we need to find alpha is.

    Therefore, alpha equals 5.

    Related Questions to study

    General
    Maths-

    Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

    Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

    Maths-General
    General
    chemistry-

    Bleaching powder has the molecular formula:

    Bleaching powder has the molecular formula:

    chemistry-General
    General
    Maths-

    If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

    If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

    Maths-General
    parallel
    General
    maths-

    If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

    If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

    maths-General
    General
    maths-

    If A =open square brackets table row i 0 row 0 cell negative i end cell end table close square brackets, B =open square brackets table row 0 cell negative 1 end cell row 1 0 end table close square brackets and C =open square brackets table row 0 i row i 0 end table close square brackets, then A2 = B2 =C2 =

    If A =open square brackets table row i 0 row 0 cell negative i end cell end table close square brackets, B =open square brackets table row 0 cell negative 1 end cell row 1 0 end table close square brackets and C =open square brackets table row 0 i row i 0 end table close square brackets, then A2 = B2 =C2 =

    maths-General
    General
    maths-

    If Ai = open square brackets table row cell a to the power of i end exponent end cell cell b to the power of i end exponent end cell row cell b to the power of i end exponent end cell cell a to the power of i end exponent end cell end table close square bracketsand if |a|<1, |b|<1, thennot stretchy sum subscript i equals 1 end subscript superscript infinity end superscript blankdet (Ai) is equal to-

    If Ai = open square brackets table row cell a to the power of i end exponent end cell cell b to the power of i end exponent end cell row cell b to the power of i end exponent end cell cell a to the power of i end exponent end cell end table close square bracketsand if |a|<1, |b|<1, thennot stretchy sum subscript i equals 1 end subscript superscript infinity end superscript blankdet (Ai) is equal to-

    maths-General
    parallel
    General
    maths-

    If matrix A =open square brackets table row 1 0 cell negative 1 end cell row 3 4 5 row 0 6 7 end table close square bracketsand its inverse is denoted byA to the power of negative 1 end exponent equals open square brackets table row cell a subscript 11 end subscript end cell cell a subscript 12 end subscript end cell cell a subscript 13 end subscript end cell row cell a subscript 21 end subscript end cell cell a subscript 22 end subscript end cell cell a subscript 23 end subscript end cell row cell a subscript 31 end subscript end cell cell a subscript 32 end subscript end cell cell a subscript 33 end subscript end cell end table close square brackets, then the value of a23 is equal to-

    If matrix A =open square brackets table row 1 0 cell negative 1 end cell row 3 4 5 row 0 6 7 end table close square bracketsand its inverse is denoted byA to the power of negative 1 end exponent equals open square brackets table row cell a subscript 11 end subscript end cell cell a subscript 12 end subscript end cell cell a subscript 13 end subscript end cell row cell a subscript 21 end subscript end cell cell a subscript 22 end subscript end cell cell a subscript 23 end subscript end cell row cell a subscript 31 end subscript end cell cell a subscript 32 end subscript end cell cell a subscript 33 end subscript end cell end table close square brackets, then the value of a23 is equal to-

    maths-General
    General
    Maths-

    For the matrix A =open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which of the following is correct

    For the matrix A =open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which of the following is correct

    Maths-General
    General
    Maths-

    If a matrix A is such that3A3 + 2A2 + 5A + I = 0, then A–1 is equal to-

    If a matrix A is such that3A3 + 2A2 + 5A + I = 0, then A–1 is equal to-

    Maths-General
    parallel
    General
    Maths-

    Let F(alpha) =open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, where alpha  element of R. Then (F(alpha))–1 is equal to

    Let F(alpha) =open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, where alpha  element of R. Then (F(alpha))–1 is equal to

    Maths-General
    General
    Maths-

    If A= open square brackets table row 1 3 row 3 4 end table close square brackets and A2 – kA – 5I2 = O, then the value of k is-

    If A= open square brackets table row 1 3 row 3 4 end table close square brackets and A2 – kA – 5I2 = O, then the value of k is-

    Maths-General
    General
    Maths-

    If M =open square brackets table row 1 2 row 2 3 end table close square bracketsand M2 lambdaM – straight I subscript 2 = 0, then lambda equals -

    If M =open square brackets table row 1 2 row 2 3 end table close square bracketsand M2 lambdaM – straight I subscript 2 = 0, then lambda equals -

    Maths-General
    parallel
    General
    Maths-

    If open square brackets table attributes columnalign center center columnspacing 1em end attributes row 1 cell negative tan theta end cell row cell tan theta end cell 1 end table close square brackets open square brackets table row 1 cell tan invisible function application theta end cell row cell negative tan invisible function application theta end cell 1 end table close square brackets to the power of negative 1 end exponent=open square brackets table row a cell negative b end cell row b a end table close square brackets, then -

    If open square brackets table attributes columnalign center center columnspacing 1em end attributes row 1 cell negative tan theta end cell row cell tan theta end cell 1 end table close square brackets open square brackets table row 1 cell tan invisible function application theta end cell row cell negative tan invisible function application theta end cell 1 end table close square brackets to the power of negative 1 end exponent=open square brackets table row a cell negative b end cell row b a end table close square brackets, then -

    Maths-General
    General
    Maths-

    If A = open square brackets table row 0 1 row cell negative 1 end cell 0 end table close square brackets and (aI2 + bA)2 = A, then -

    If A = open square brackets table row 0 1 row cell negative 1 end cell 0 end table close square brackets and (aI2 + bA)2 = A, then -

    Maths-General
    General
    Maths-

    If A is invertible matrix, then det (A–1) equals-

    If A is invertible matrix, then det (A–1) equals-

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.