Maths-
General
Easy

Question

Statement-I : The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct. Statement-II : Circumradius  2 (inradius)

  1. Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I
  2. Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I
  3. Statement-I is true, Statement-II is false.

     

  4. Statement-I is false, Statement-II is true

The correct answers are: Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I, Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I

Book A Free Demo

+91

Grade*

Related Questions to study

General
maths-

The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is


table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table

The complete solution set of the equation open vertical bar x to the power of 2 end exponent minus x close vertical bar plus vertical line x plus 3 vertical line equals open vertical bar x to the power of 2 end exponent minus 2 x minus 3 close vertical bar is

maths-General

table row cell open parentheses x to the power of 2 end exponent minus x close parentheses left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x left parenthesis x minus 1 right parenthesis left parenthesis x plus 3 right parenthesis less or equal than 0 end cell row cell x element of left parenthesis negative infinity comma negative 3 right square bracket union left square bracket 0 , 1 right square bracket end cell end table
General
Maths-

The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

The solution(s) of the equation cos2x sin6x = cos3x sin5x in the interval [0,straight pi ] is/are –

Maths-General
General
maths-

The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
(not possible for real x)
text or  end text sin invisible function application x equals 0
Hence, the solutions are x = 0, p, 2p, 3p.

The equation 4 s i n to the power of 2 end exponent invisible function application x minus 2 left parenthesis square root of 3 plus 1 right parenthesis s i n invisible function application x plus square root of 3 equals 0 has

maths-General
sin to the power of 4 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application xsin invisible function application x plus 2 sin to the power of 2 end exponent invisible function application x plus sin invisible function application x equals 0
table row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus cos to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x minus 1 plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x plus 1 close square brackets equals 0 end cell row cell s i n invisible function application x open square brackets sin to the power of 3 end exponent invisible function application x plus sin to the power of 2 end exponent invisible function application x plus 2 sin invisible function application x close square brackets equals 0 end cell row cell s i n to the power of 2 end exponent invisible function application x equals 0 text end text text o end text text r end text text end text s i n to the power of 2 end exponent invisible function application x plus s i n invisible function application x plus 2 equals 0 end cell end table
(not possible for real x)
text or  end text sin invisible function application x equals 0
Hence, the solutions are x = 0, p, 2p, 3p.
General
maths-

s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table

s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x if

maths-General
table row cell s i n to the power of 2 end exponent invisible function application x minus c o s invisible function application 2 x equals 2 minus s i n invisible function application 2 x end cell row cell rightwards double arrow s i n to the power of 2 end exponent invisible function application x minus open parentheses 1 minus 2 s i n to the power of 2 end exponent invisible function application x close parentheses equals 2 minus 2 s i n invisible function application x c o s invisible function application x end cell row cell rightwards double arrow 3 s i n to the power of 2 end exponent invisible function application x plus 2 s i n invisible function application x c o s invisible function application x equals 3 end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text 1 end text text end text colon c o s invisible function application x not equal to 0 end cell row cell therefore 3 t a n to the power of 2 end exponent invisible function application x plus 2 t a n invisible function application x equals 3 open parentheses 1 plus t a n to the power of 2 end exponent invisible function application x close parentheses rightwards double arrow t a n invisible function application x equals fraction numerator 3 over denominator 2 end fraction end cell row cell text end text text C end text text a end text text s end text text e end text text-end text text I end text text I end text text end text colon c o s invisible function application x equals 0 end cell row cell therefore 3 left parenthesis 1 right parenthesis plus 2 left parenthesis plus-or-minus 1 right parenthesis left parenthesis 0 right parenthesis equals 3 text end text text w end text text h end text text i end text text c end text text h end text text end text text i end text text s end text text end text text t end text text r end text text u end text text e end text text end text therefore x equals left parenthesis 2 n plus 1 right parenthesis fraction numerator pi over denominator 2 end fraction end cell end table
General
maths-

fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

fraction numerator 3 x squared plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction equals fraction numerator a over denominator left parenthesis x minus 1 right parenthesis end fraction plus fraction numerator b over denominator left parenthesis x minus 1 right parenthesis squared end fraction plus fraction numerator c over denominator left parenthesis x minus 1 right parenthesis cubed end fraction plus fraction numerator d over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end fraction text  then  end text open square brackets table attributes columnalign left left columnspacing 1em end attributes row cell a      b end cell row cell c      d end cell end table close square brackets equals

maths-General
General
maths-

If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

If vertical line x vertical line less than 1 fifth, the coefficient of x cubed in the expansion of  fraction numerator 1 over denominator left parenthesis 1 minus 5 x right parenthesis left parenthesis 1 minus 4 x right parenthesis end fraction is

maths-General
General
maths-

If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.

If a subscript K equals fraction numerator 1 over denominator K left parenthesis K plus 1 right parenthesis end fractionfor K equals 1 comma 2 comma 3 horizontal ellipsis.. n  then open parentheses sum from K equals 1 to n of   a subscript K close parentheses squared equals

maths-General
Because of the greater size of Br, Br exert greater repulsive force. Hence Br in the equitorial position add maximum stability.
General
maths-

The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

The number of partial fractions of  fraction numerator 2 over denominator x to the power of 4 plus x squared plus 1 end fractionis

maths-General
General
maths-

The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

The number of partial fractions of fraction numerator x cubed minus 3 x squared plus 3 x over denominator left parenthesis x minus 1 right parenthesis to the power of 5 end fraction is

maths-General
General
maths-

Coefficient of x cubed y to the power of 4 z squared is left parenthesis 2 x minus 3 y plus 4 z right parenthesis to the power of 9 is

6 A g N O subscript 3 end subscript plus A s H subscript 3 end subscript plus 3 H subscript 2 end subscript O ⟶
6 A g stack stack downwards arrow with _ below plus H subscript 3 end subscript A s O subscript 3 end subscript with _ below plus 6 H N O subscript 3 end subscript

Coefficient of x cubed y to the power of 4 z squared is left parenthesis 2 x minus 3 y plus 4 z right parenthesis to the power of 9 is

maths-General
6 A g N O subscript 3 end subscript plus A s H subscript 3 end subscript plus 3 H subscript 2 end subscript O ⟶
6 A g stack stack downwards arrow with _ below plus H subscript 3 end subscript A s O subscript 3 end subscript with _ below plus 6 H N O subscript 3 end subscript
General
maths-

Coefficient of x to the power of r is 1 plus left parenthesis 1 plus x right parenthesis plus left parenthesis 1 plus x right parenthesis squared plushorizontal ellipsis plus left parenthesis 1 plus x right parenthesis to the power of n is

Because of the partial positive charge on adjacent N-atoms there is a repulsion along N  N bond, hence N  N bond distance become higher.

Coefficient of x to the power of r is 1 plus left parenthesis 1 plus x right parenthesis plus left parenthesis 1 plus x right parenthesis squared plushorizontal ellipsis plus left parenthesis 1 plus x right parenthesis to the power of n is

maths-General
Because of the partial positive charge on adjacent N-atoms there is a repulsion along N  N bond, hence N  N bond distance become higher.
General
maths-

If a,b,c,d are consective binomial coefficients of left parenthesis 1 plus x right parenthesis to the power of n then fraction numerator a plus b over denominator a end fraction comma fraction numerator b plus c over denominator b end fraction comma fraction numerator c plus d over denominator c end fraction are is

If a,b,c,d are consective binomial coefficients of left parenthesis 1 plus x right parenthesis to the power of n then fraction numerator a plus b over denominator a end fraction comma fraction numerator b plus c over denominator b end fraction comma fraction numerator c plus d over denominator c end fraction are is

maths-General
General
maths-

No of terms whose value depend on 'x' is left parenthesis x squared minus 2 plus 1 divided by x squared right parenthesis to the power of n is

B a open parentheses N subscript 3 end subscript close parentheses subscript 2 end subscript stack ⟶ with capital delta on top B a plus 3 N subscript 2 end subscript

No of terms whose value depend on 'x' is left parenthesis x squared minus 2 plus 1 divided by x squared right parenthesis to the power of n is

maths-General
B a open parentheses N subscript 3 end subscript close parentheses subscript 2 end subscript stack ⟶ with capital delta on top B a plus 3 N subscript 2 end subscript
General
Maths-

If T subscript 0 comma T subscript 1 comma T subscript 2 comma horizontal ellipsis. T subscript n represent the terms is left parenthesis x plus a right parenthesis to the power of n then left parenthesis T subscript 0 minus T subscript 2 plus T subscript 4 minus T subscript 6 plus midline horizontal ellipsis right parenthesis squared plusleft parenthesis T subscript 1 minus T subscript 3 plus T subscript 5 minus horizontal ellipsis right parenthesis squared  is

If T subscript 0 comma T subscript 1 comma T subscript 2 comma horizontal ellipsis. T subscript n represent the terms is left parenthesis x plus a right parenthesis to the power of n then left parenthesis T subscript 0 minus T subscript 2 plus T subscript 4 minus T subscript 6 plus midline horizontal ellipsis right parenthesis squared plusleft parenthesis T subscript 1 minus T subscript 3 plus T subscript 5 minus horizontal ellipsis right parenthesis squared  is

Maths-General
General
Maths-

Let ' O be the origin and A be a point on the curve y to the power of 2 end exponent equals 4 x then locus of the midpoint of OA is

Let ' O be the origin and A be a point on the curve y to the power of 2 end exponent equals 4 x then locus of the midpoint of OA is

Maths-General