Maths-
General
Easy

Question

The expression logp where p greater or equal than 2 comma p element of N semicolon n element of N when simplified is.

  1. Independent of p    
  2. Independent of p and of n    
  3. dependent on both p & n    
  4. positive    

The correct answer is: Independent of p

Related Questions to study

General
maths-

Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

Let N=open parentheses open parentheses square root of 7 close parentheses to the power of fraction numerator 2 over denominator log subscript 25 end subscript invisible function application 7 end fraction end exponent minus 12 5 to the power of log subscript 25 end subscript invisible function application 6 end exponent close parentheses Then log2N has the value –

maths-General
General
maths-

If a2 + 4b2 = 12ab, then log (a + 2b) =

If a2 + 4b2 = 12ab, then log (a + 2b) =

maths-General
General
maths-

Given that logpx = α and logqx = β, then value of logp/q x equals-

Given that logpx = α and logqx = β, then value of logp/q x equals-

maths-General
parallel
General
Maths-

If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

 f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 right parenthesis end fraction
stack l i m with x rightwards arrow 0 below f'(x)
stack l i m with x rightwards arrow 0 below fraction numerator open parentheses fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses x to the power of 1 divided by 3 end exponent open square brackets fraction numerator cos invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction close square brackets left parenthesis 3 x right parenthesis over denominator open parentheses fraction numerator tan to the power of – 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent. x. open parentheses fraction numerator e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses. x to the power of 1 divided by 3 end exponent end fraction
= 3

If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent – 1 right parenthesis end fraction (x not equal to 0), then stack l i m with x rightwards arrow 0 below f ' (x) is -

Maths-General
 f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of – 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 right parenthesis end fraction
stack l i m with x rightwards arrow 0 below f'(x)
stack l i m with x rightwards arrow 0 below fraction numerator open parentheses fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses x to the power of 1 divided by 3 end exponent open square brackets fraction numerator cos invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction close square brackets left parenthesis 3 x right parenthesis over denominator open parentheses fraction numerator tan to the power of – 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent. x. open parentheses fraction numerator e to the power of x to the power of 1 divided by 3 end exponent end exponent – 1 over denominator x to the power of 1 divided by 3 end exponent end fraction close parentheses. x to the power of 1 divided by 3 end exponent end fraction
= 3
General
Maths-

If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis d x over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis = fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
= fraction numerator x to the power of 1 divided by 3 end exponent fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction. fraction numerator log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction.3 x over denominator x. open parentheses fraction numerator tan to the power of negative 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent open parentheses fraction numerator e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 over denominator 5 x to the power of 1 divided by 3 end exponent end fraction close parentheses.5 x to the power of 1 divided by 3 end exponent end fraction
= fraction numerator 1.1.3 over denominator 1.1.5 end fraction equals 3/5

If f(x) is the primitive of fraction numerator sin invisible function application root index 3 of x end root log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of root index 3 of x end root end exponent minus 1 right parenthesis end fraction(x not equal to 0), then stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis is-

Maths-General
f(x) = not stretchy integral fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis d x over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
stack l i m with x rightwards arrow 0 below f ´ left parenthesis x right parenthesis = fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator left parenthesis tan to the power of negative 1 end exponent invisible function application square root of x right parenthesis to the power of 2 end exponent left parenthesis e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 right parenthesis end fraction
= fraction numerator x to the power of 1 divided by 3 end exponent fraction numerator sin invisible function application x to the power of 1 divided by 3 end exponent over denominator x to the power of 1 divided by 3 end exponent end fraction. fraction numerator log invisible function application left parenthesis 1 plus 3 x right parenthesis over denominator 3 x end fraction.3 x over denominator x. open parentheses fraction numerator tan to the power of negative 1 end exponent invisible function application square root of x over denominator square root of x end fraction close parentheses to the power of 2 end exponent open parentheses fraction numerator e to the power of 5 x to the power of 1 divided by 3 end exponent end exponent minus 1 over denominator 5 x to the power of 1 divided by 3 end exponent end fraction close parentheses.5 x to the power of 1 divided by 3 end exponent end fraction
= fraction numerator 1.1.3 over denominator 1.1.5 end fraction equals 3/5
General
maths-

If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

If f left parenthesis x right parenthesis equals open vertical bar table row cell s i n invisible function application x end cell cell s i n invisible function application a end cell cell s i n invisible function application b end cell row cell c o s invisible function application x end cell cell c o s invisible function application a end cell cell c o s invisible function application b end cell row cell t a n invisible function application x end cell cell t a n invisible function application a end cell cell t a n invisible function application b end cell end table close vertical bar where 0 less than a less than b less than fraction numerator pi over denominator 2 end fraction hen the equation f(x) = 0 has, in the interval (a, b)

maths-General
parallel
General
physics-

The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

Displacement (in magnitude)
equals fraction numerator 1 over denominator 2 end fraction open parentheses 3 cross times 2 minus fraction numerator 1 over denominator 2 end fraction cross times 1 cross times 2 plus 1 cross times 1 close parenthesesm=3m

The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

physics-General
Displacement (in magnitude)
equals fraction numerator 1 over denominator 2 end fraction open parentheses 3 cross times 2 minus fraction numerator 1 over denominator 2 end fraction cross times 1 cross times 2 plus 1 cross times 1 close parenthesesm=3m
General
maths-

Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

ϕ left parenthesis x right parenthesis equals f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis text  where  end text x element of open square brackets x subscript 0 end subscript comma b close square brackets by c element of open parentheses x subscript 0 end subscript comma b close parentheses contains as member
ϕ to the power of ´ end exponent left parenthesis c right parenthesis equals fraction numerator ϕ left parenthesis b right parenthesis minus ϕ open parentheses x subscript 0 end subscript close parentheses over denominator b minus x subscript 0 end subscript end fraction greater than 0
therefore f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis text  for  end text x equals b

Let f x( ) and g x( ) are defined and differentiable for x greater or equal than x subscript 0 end subscript and f open parentheses x subscript 0 close parentheses equals g open parentheses x subscript 0 close parentheses comma f to the power of ´ left parenthesis x right parenthesis greater than straight g to the power of straight prime left parenthesis x right parenthesis text  for  end text x greater than x subscript 0 then

maths-General
ϕ left parenthesis x right parenthesis equals f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis text  where  end text x element of open square brackets x subscript 0 end subscript comma b close square brackets by c element of open parentheses x subscript 0 end subscript comma b close parentheses contains as member
ϕ to the power of ´ end exponent left parenthesis c right parenthesis equals fraction numerator ϕ left parenthesis b right parenthesis minus ϕ open parentheses x subscript 0 end subscript close parentheses over denominator b minus x subscript 0 end subscript end fraction greater than 0
therefore f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis text  for  end text x equals b
General
maths-

In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

In the given figure, if POQ is a diameter of the circle and PR = QR, then RPQ is

maths-General
parallel
General
maths-

In the given figure, find the values of ‘x’ and ‘y’

In the given figure, find the values of ‘x’ and ‘y’

maths-General
General
maths-

PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

PQRS is a cyclic quadrilateral and PQ is the diameter of the circle. If QPR= ° 35 , then the value of PSR is

maths-General
General
maths-

Find the value of ‘x’ in the given figure

Find the value of ‘x’ in the given figure

maths-General
parallel
General
maths-

In the given figure, find PR

In the given figure, find PR

maths-General
General
maths-

In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

In the given figure PA, PB, EC, FB, FD and ED are tangents to the circle. If PA=13cm,CE = 4.5cm and EF = 9cm then PF is

maths-General
General
maths-

If TP and TQ are the two tangents to a circle with centre ‘O’ such that thentext end text text PTO end text, is

If TP and TQ are the two tangents to a circle with centre ‘O’ such that thentext end text text PTO end text, is

maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.