Maths-
General
Easy

Question

Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

  1. 2    
  2. 3    
  3. 4    
  4. None of these    

hintHint:

In order to solve this question, we should know that the number of the divisor of any number
x equals a to the power of m space end exponent b to the power of n c to the power of p.... space space where a, b, c are prime numbers and is given by (m + 1) (n + 1) (p + 1)….. By using this property we can find the solution of this question.

The correct answer is: 4


    Detailed Solution
    In this question, we have been asked to find the total number of divisors of 480 which are of the form  4n + 2, n greater or equal than 0 
    In order to solve this question, we should know that the number of the divisor of any number
    x equals a to the power of m space end exponent b to the power of n c to the power of p.... space space where a, b, c are prime numbers and is given by (m + 1) (n + 1) (p + 1)…..
    We know that 480 can be expressed as 480 space equals space 2 to the power of 5.3.5
    S o comma space a c c o r d i n g space t o space t h e space f o r m u l a comma space t h e space t o t a l space n u m b e r space o f space d i v i s o r s space o f space 480 space a r e
space left parenthesis 5 space plus space 1 right parenthesis space left parenthesis 1 space plus space 1 right parenthesis space left parenthesis 1 space plus space 1 right parenthesis space equals space 6 cross times 2 cross times 2 equals 24 space.
    Now, we have been asked to find the number of divisors which are of the form 4n + 2 = 2 (2n + 1), which means odd divisors cannot be a part of the solution. 
    S o comma space t h e space t o t a l space n u m b e r space o f space o d d space d i v i s o r s space t h a t space a r e space p o s s i b l e space a r e space left parenthesis 1 space plus space 1 right parenthesis space left parenthesis 1 space plus space 1 right parenthesis space equals space 2 cross times 2 equals 4 space comma space a c c o r d i n g space t o space t h e space p r o p e r t y.
    Now, we can say the total number of even divisors are = all divisors – odd divisor = 24 - 4 = 20
    Now, we have been given that the divisor should be of 4n + 2, which means they should not be a multiple of 4 but multiple of 2. For that, we will subtract the multiple of 4 which are divisor of 480 from the even divisors.
    And, we know that, 480 space equals space 2 to the power of 5.3.5 
    space S o comma space t h e space n u m b e r space o f space d i v i s o r s space t h a t space a r e space m u l t i p l e s space o f space 4 space a r e space left parenthesis 3 space plus space 1 right parenthesis space left parenthesis 1 space plus space 1 right parenthesis space left parenthesis 1 space plus space 1 right parenthesis space equals space 4 cross times 2 cross times 2 space space equals space 16
    Hence, we can say that there are 16 divisors of 480 which are multiple of 4.
    S o comma space t h e space t o t a l space n u m b e r space o f space d i v i s o r s space w h i c h space a r e space e v e n space b u t space n o t space d i v i s i b l e space b y space 2 space c a n space b e space g i v e n space b y space 20 space – space 16 space equals space 4.
    Thus, total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to 4.

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    Related Questions to study

    General
    Maths-

    If 9P5 + 5 9P4 = scriptbase P subscript r end scriptbase presuperscript 10, then r =

    H e r e space w e space h a v e space o b t a i n e d space t h e space v a l u e space o f space t h e space v a r i a b l e space u s e d space i n space t h e space e x p r e s s i o n.
W e space h a v e space a l s o space u s e d space t h e space f o r m u l a space o f space p e r m u t a t i o n space h e r e. space
H e r e comma space scriptbase P subscript r space m e a n s space t h e space n u m b e r space o f space w a y s space t o space c h o o s e space r space space d i f f e r e n t space t h i n g s space f r o m space t h e space s e t space o f space n space space t h i n g s space w i t h o u t space r e p l a c e m e n t. space end scriptbase presuperscript n
H e r e space w e space n e e d space t o space k n o w space t h e space m e t h o d space o f space f i n d i n g space t h e space f a c t o r i a l space o f space a n y space n u m b e r. space F a c t o r i a l space i s space d e f i n e d space a s space t h e space m u l t i p l i c a t i o n space o f space a l l space t h e space w h o l e space n u m b e r s space f r o m space t h e space g i v e n space n u m b e r space d o w n space t o space t h e space n u m b e r space 1.

    If 9P5 + 5 9P4 = scriptbase P subscript r end scriptbase presuperscript 10, then r =

    Maths-General

    H e r e space w e space h a v e space o b t a i n e d space t h e space v a l u e space o f space t h e space v a r i a b l e space u s e d space i n space t h e space e x p r e s s i o n.
W e space h a v e space a l s o space u s e d space t h e space f o r m u l a space o f space p e r m u t a t i o n space h e r e. space
H e r e comma space scriptbase P subscript r space m e a n s space t h e space n u m b e r space o f space w a y s space t o space c h o o s e space r space space d i f f e r e n t space t h i n g s space f r o m space t h e space s e t space o f space n space space t h i n g s space w i t h o u t space r e p l a c e m e n t. space end scriptbase presuperscript n
H e r e space w e space n e e d space t o space k n o w space t h e space m e t h o d space o f space f i n d i n g space t h e space f a c t o r i a l space o f space a n y space n u m b e r. space F a c t o r i a l space i s space d e f i n e d space a s space t h e space m u l t i p l i c a t i o n space o f space a l l space t h e space w h o l e space n u m b e r s space f r o m space t h e space g i v e n space n u m b e r space d o w n space t o space t h e space n u m b e r space 1.

    General
    maths-

    Assertion (A) :If fraction numerator 5 x plus 1 over denominator left parenthesis x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x plus 2 end fraction plus fraction numerator B over denominator x minus 1 end fraction, then A equals 3 comma B equals 2
    Reason (R) :fraction numerator P x plus q over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis end fraction equals fraction numerator P a plus q over denominator left parenthesis x minus a right parenthesis left parenthesis a minus b right parenthesis end fraction plus fraction numerator P b plus q over denominator left parenthesis x minus b right parenthesis left parenthesis b minus a right parenthesis end fraction

    Assertion (A) :If fraction numerator 5 x plus 1 over denominator left parenthesis x plus 2 right parenthesis left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x plus 2 end fraction plus fraction numerator B over denominator x minus 1 end fraction, then A equals 3 comma B equals 2
    Reason (R) :fraction numerator P x plus q over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis end fraction equals fraction numerator P a plus q over denominator left parenthesis x minus a right parenthesis left parenthesis a minus b right parenthesis end fraction plus fraction numerator P b plus q over denominator left parenthesis x minus b right parenthesis left parenthesis b minus a right parenthesis end fraction

    maths-General
    General
    physics-

    A particle is released from a height. At certain height its kinetic energy is three times its potential energy. The height and speed of the particle at that instant are respectively

    A particle is released from a height. At certain height its kinetic energy is three times its potential energy. The height and speed of the particle at that instant are respectively

    physics-General
    parallel
    General
    Maths-

    If x is real, then maximum value of fraction numerator 3 x to the power of 2 end exponent plus 9 x plus 17 over denominator 3 x to the power of 2 end exponent plus 9 x plus 7 end fraction is

    If x is real, then maximum value of fraction numerator 3 x to the power of 2 end exponent plus 9 x plus 17 over denominator 3 x to the power of 2 end exponent plus 9 x plus 7 end fraction is

    Maths-General
    General
    Maths-

    The value of 'c' of Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x squared minus 3 x minus 2 text  for  end text x element of left square bracket negative 1 , 2 right square bracket is

    The value of 'c' of Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x squared minus 3 x minus 2 text  for  end text x element of left square bracket negative 1 , 2 right square bracket is

    Maths-General
    General
    Maths-

    The value of 'c' of Rolle's mean value theorem for f space left parenthesis x right parenthesis equals vertical line x vertical line equals i n space left square bracket negative 1 , 1 right square bracket is

    The value of 'c' of Rolle's mean value theorem for f space left parenthesis x right parenthesis equals vertical line x vertical line equals i n space left square bracket negative 1 , 1 right square bracket is

    Maths-General
    parallel
    General
    Maths-

    The value of 'c' of Rolle's theorem for f space left parenthesis x right parenthesis equals l o g space open parentheses x squared plus 2 close parenthesesl o g subscript 3 end subscript on [–1, 1] is

    The value of 'c' of Rolle's theorem for f space left parenthesis x right parenthesis equals l o g space open parentheses x squared plus 2 close parenthesesl o g subscript 3 end subscript on [–1, 1] is

    Maths-General
    General
    Maths-

    For f space left parenthesis x right parenthesis equals 4 minus left parenthesis 6 minus x right parenthesis to the power of 2 divided by 3 end exponent in [5, 7]

    For f space left parenthesis x right parenthesis equals 4 minus left parenthesis 6 minus x right parenthesis to the power of 2 divided by 3 end exponent in [5, 7]

    Maths-General
    General
    Maths-

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x cubed minus 2 x squared minus x plus 4 in [0, 1] is

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x cubed minus 2 x squared minus x plus 4 in [0, 1] is

    Maths-General
    parallel
    General
    Maths-

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x space left parenthesis x minus 2 right parenthesis squared in [0, 2] is

    The value of 'c' in Lagrange's mean value theorem for f space left parenthesis x right parenthesis equals x space left parenthesis x minus 2 right parenthesis squared in [0, 2] is

    Maths-General
    General
    Maths-

    The equation r equals a c o s space theta plus b s i n space theta represents

    The equation r equals a c o s space theta plus b s i n space theta represents

    Maths-General
    General
    Maths-

    The polar equation of the circle whose end points of the diameter are open parentheses square root of 2 comma fraction numerator pi over denominator 4 end fraction close parentheses and open parentheses square root of 2 comma fraction numerator 3 pi over denominator 4 end fraction close parentheses is

    The polar equation of the circle whose end points of the diameter are open parentheses square root of 2 comma fraction numerator pi over denominator 4 end fraction close parentheses and open parentheses square root of 2 comma fraction numerator 3 pi over denominator 4 end fraction close parentheses is

    Maths-General
    parallel
    General
    Maths-

    The radius of the circle r equals 8 s i n space theta plus 6 c o s space theta is

    The radius of the circle r equals 8 s i n space theta plus 6 c o s space theta is

    Maths-General
    General
    Maths-

    The adjoining figure shows the graph of y equals a x to the power of 2 end exponent plus b x plus c Then –

    The adjoining figure shows the graph of y equals a x to the power of 2 end exponent plus b x plus c Then –

    Maths-General
    General
    Maths-

    Graph of y = ax2 + bx + c = 0 is given adjacently. What conclusions can be drawn from this graph –

    Here we can see that the graph was given to us and us to take out the conclusion from that since we have the options available so I would suggest you to always start to check from the options because by the use of options we can see how easily we concluded this question.

    Graph of y = ax2 + bx + c = 0 is given adjacently. What conclusions can be drawn from this graph –

    Maths-General

    Here we can see that the graph was given to us and us to take out the conclusion from that since we have the options available so I would suggest you to always start to check from the options because by the use of options we can see how easily we concluded this question.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.