Physics-
General
Easy

Question

Figures i) and ii) below show the displacement-time graphs of two particles moving along the x-axis. We can say that

  1. Both the particles are having a uniformly accelerated motion    
  2. Both the particles are having a uniformly retarded motion    
  3. Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion    
  4. Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated motion    

The correct answer is: Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion

Book A Free Demo

+91

Grade*

Related Questions to study

General
physics-

The graph of displacement v divided by s time is

Its corresponding velocity-time graph will be

We know that the velocity of body is given by the slope of displacement – time graph so it is clear that initially slope of the graph is positive and after some time it becomes zero (corresponding to the peak of graph) and it will become negative

The graph of displacement v divided by s time is

Its corresponding velocity-time graph will be

physics-General
We know that the velocity of body is given by the slope of displacement – time graph so it is clear that initially slope of the graph is positive and after some time it becomes zero (corresponding to the peak of graph) and it will become negative
General
Maths-

Period of fraction numerator 2 sin space 2 x minus 5 cos space 2 x over denominator 7 cos space x minus 8 sin space x end fraction is

Period of fraction numerator 2 sin space 2 x minus 5 cos space 2 x over denominator 7 cos space x minus 8 sin space x end fraction is

Maths-General
General
physics-

The current I drawn from the 5V source will be

The given circuit can be redrawn as

The current I drawn from the 5V source will be

physics-General
The given circuit can be redrawn as
General
physics-

In the circuit given E=0.6V, R subscript 1 end subscript=100capital omega,R subscript 2 end subscript equals R subscript 3 end subscript equals 50 capital omega comma blank R subscript 4 end subscript equals 75 capital omega. The equivalent resistance of the circuit, in ohm is

R subscript 2 end subscript comma blank R subscript 3 end subscript a n d R subscript 4 end subscript are in parallel order, so their equivalent resistance
fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator R to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator R to the power of 3 end exponent end fraction plus fraction numerator 1 over denominator R to the power of 4 end exponent end fraction
equals fraction numerator 1 over denominator 50 end fraction plus fraction numerator 1 over denominator 50 end fraction plus fraction numerator 1 over denominator 75 end fraction
equals fraction numerator 30 plus 30 plus 20 over denominator 1500 end fraction
equals fraction numerator 80 over denominator 1500 end fraction equals fraction numerator 4 over denominator 75 end fraction
therefore blank R to the power of ´ end exponent equals fraction numerator 75 over denominator 4 end fraction capital omega
R equals R subscript 1 end subscript plus R to the power of ´ end exponent equals 100 plus fraction numerator 75 over denominator 4 end fraction
equals fraction numerator 475 over denominator 4 end fraction capital omega equals 118.75 capital omega

In the circuit given E=0.6V, R subscript 1 end subscript=100capital omega,R subscript 2 end subscript equals R subscript 3 end subscript equals 50 capital omega comma blank R subscript 4 end subscript equals 75 capital omega. The equivalent resistance of the circuit, in ohm is

physics-General
R subscript 2 end subscript comma blank R subscript 3 end subscript a n d R subscript 4 end subscript are in parallel order, so their equivalent resistance
fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator R to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator R to the power of 3 end exponent end fraction plus fraction numerator 1 over denominator R to the power of 4 end exponent end fraction
equals fraction numerator 1 over denominator 50 end fraction plus fraction numerator 1 over denominator 50 end fraction plus fraction numerator 1 over denominator 75 end fraction
equals fraction numerator 30 plus 30 plus 20 over denominator 1500 end fraction
equals fraction numerator 80 over denominator 1500 end fraction equals fraction numerator 4 over denominator 75 end fraction
therefore blank R to the power of ´ end exponent equals fraction numerator 75 over denominator 4 end fraction capital omega
R equals R subscript 1 end subscript plus R to the power of ´ end exponent equals 100 plus fraction numerator 75 over denominator 4 end fraction
equals fraction numerator 475 over denominator 4 end fraction capital omega equals 118.75 capital omega
General
physics-

Six equal resistances are connected between points P, Q and R as shown in the figure. Then the net resistance will be maximum between

R subscript P Q end subscript equals fraction numerator 5 over denominator 11 end fraction r comma blank R subscript Q R end subscript equals fraction numerator 4 over denominator 11 end fraction r a n d R subscript P R end subscript equals fraction numerator 3 over denominator 11 end fraction r
therefore R subscript P Q end subscriptis maximum.

Six equal resistances are connected between points P, Q and R as shown in the figure. Then the net resistance will be maximum between

physics-General
R subscript P Q end subscript equals fraction numerator 5 over denominator 11 end fraction r comma blank R subscript Q R end subscript equals fraction numerator 4 over denominator 11 end fraction r a n d R subscript P R end subscript equals fraction numerator 3 over denominator 11 end fraction r
therefore R subscript P Q end subscriptis maximum.
General
physics-

In the circuit shown the equivalent resistance between A and B is

The three resistances between A and B are parallel,
fraction numerator 1 over denominator R subscript c o m b end subscript end fraction equals fraction numerator 1 over denominator R subscript 1 end subscript end fraction plus fraction numerator 1 over denominator R subscript 2 end subscript end fraction plus fraction numerator 1 over denominator R subscript 3 end subscript end fraction
equals fraction numerator 1 over denominator 9 end fraction plus fraction numerator 1 over denominator 9 end fraction plus fraction numerator 1 over denominator 9 end fraction
fraction numerator 1 over denominator R subscript c o m b end subscript end fraction equals fraction numerator 3 over denominator 9 end fraction
⟹ R subscript c o m b end subscript equals 3 capital omega

In the circuit shown the equivalent resistance between A and B is

physics-General
The three resistances between A and B are parallel,
fraction numerator 1 over denominator R subscript c o m b end subscript end fraction equals fraction numerator 1 over denominator R subscript 1 end subscript end fraction plus fraction numerator 1 over denominator R subscript 2 end subscript end fraction plus fraction numerator 1 over denominator R subscript 3 end subscript end fraction
equals fraction numerator 1 over denominator 9 end fraction plus fraction numerator 1 over denominator 9 end fraction plus fraction numerator 1 over denominator 9 end fraction
fraction numerator 1 over denominator R subscript c o m b end subscript end fraction equals fraction numerator 3 over denominator 9 end fraction
⟹ R subscript c o m b end subscript equals 3 capital omega
General
physics-

In the circuit shown, the currents i subscript 1 end subscript blank a n d blank i subscript 2 end subscriptare

R equals fraction numerator 12 cross times 4 over denominator 12 plus 4 end fraction plus 2 equals 5 capital omega
I equals fraction numerator E over denominator R plus r end fraction equals fraction numerator 12 over denominator 6 end fraction equals 2 A
I subscript 1 end subscript plus I subscript 1 end subscript equals 2 A
I proportional to fraction numerator 1 over denominator R end fraction
therefore I subscript 1 end subscript equals 0.5 A comma blank I subscript 2 end subscript equals 1.5 A

In the circuit shown, the currents i subscript 1 end subscript blank a n d blank i subscript 2 end subscriptare

physics-General
R equals fraction numerator 12 cross times 4 over denominator 12 plus 4 end fraction plus 2 equals 5 capital omega
I equals fraction numerator E over denominator R plus r end fraction equals fraction numerator 12 over denominator 6 end fraction equals 2 A
I subscript 1 end subscript plus I subscript 1 end subscript equals 2 A
I proportional to fraction numerator 1 over denominator R end fraction
therefore I subscript 1 end subscript equals 0.5 A comma blank I subscript 2 end subscript equals 1.5 A
General
physics-

The resistance is connected as shown in the figure below. Find the equivalent resistance between the points A and B.

) 3blank capital omega
R’=3+7=10capital omega
R’ and 10capital omega are in parallel, so
R to the power of ´ end exponent equals fraction numerator 10 cross times 10 over denominator 10 plus 10 end fraction equals 5 capital omega
R to the power of ´ end exponent a n d blank 5 capital omega blankare in series, so
R’=5+5=10capital omega
Now, R’ and 10capital omega are in parallel, so
R equals fraction numerator 10 cross times 10 over denominator 10 plus 10 end fraction equals 5 capital omega

The resistance is connected as shown in the figure below. Find the equivalent resistance between the points A and B.

physics-General
) 3blank capital omega
R’=3+7=10capital omega
R’ and 10capital omega are in parallel, so
R to the power of ´ end exponent equals fraction numerator 10 cross times 10 over denominator 10 plus 10 end fraction equals 5 capital omega
R to the power of ´ end exponent a n d blank 5 capital omega blankare in series, so
R’=5+5=10capital omega
Now, R’ and 10capital omega are in parallel, so
R equals fraction numerator 10 cross times 10 over denominator 10 plus 10 end fraction equals 5 capital omega
General
Maths-

The cosecant function whose period is 4 is

f(x)=cosecx
period of f(x)=4
We know that period of cosec open vertical bar k close vertical bar=fraction numerator 2 straight pi over denominator open vertical bar k close vertical bar end fraction
rightwards double arrow fraction numerator 2 straight pi over denominator open vertical bar k close vertical bar end fraction equals 4
rightwards double arrow open vertical bar k close vertical bar equals straight pi over 2
So, cosecant function whose period is 4 is cosecopen parentheses πx over 2 close parentheses.

The cosecant function whose period is 4 is

Maths-General
f(x)=cosecx
period of f(x)=4
We know that period of cosec open vertical bar k close vertical bar=fraction numerator 2 straight pi over denominator open vertical bar k close vertical bar end fraction
rightwards double arrow fraction numerator 2 straight pi over denominator open vertical bar k close vertical bar end fraction equals 4
rightwards double arrow open vertical bar k close vertical bar equals straight pi over 2
So, cosecant function whose period is 4 is cosecopen parentheses πx over 2 close parentheses.
General
Maths-

Sine functions whose period is 6 is

f(x)=sinx
period of f(x)=6
We know that period of sin ax =fraction numerator 2 straight pi over denominator a end fraction
rightwards double arrow fraction numerator 2 straight pi over denominator a end fraction equals 6
rightwards double arrow 2 straight pi equals 6 straight a
rightwards double arrow straight a equals straight pi over 3
So comma space sine space function space whose space period space is space 6 space is space sin open parentheses πx over 3 close parentheses.

Sine functions whose period is 6 is

Maths-General
f(x)=sinx
period of f(x)=6
We know that period of sin ax =fraction numerator 2 straight pi over denominator a end fraction
rightwards double arrow fraction numerator 2 straight pi over denominator a end fraction equals 6
rightwards double arrow 2 straight pi equals 6 straight a
rightwards double arrow straight a equals straight pi over 3
So comma space sine space function space whose space period space is space 6 space is space sin open parentheses πx over 3 close parentheses.
General
physics-

Which graph represents the uniform acceleration

Since slope of graph remains constant for velocity-time graph

Which graph represents the uniform acceleration

physics-General
Since slope of graph remains constant for velocity-time graph
General
physics-

An object is dropped from rest. Its v-t graph is

Using
V equals u plus a t
V equals g t(i)
Comparing with y equals m x plus c
Equation (i) represents a straight line passing through origin inclined x-axis (slope -g)

An object is dropped from rest. Its v-t graph is

physics-General
Using
V equals u plus a t
V equals g t(i)
Comparing with y equals m x plus c
Equation (i) represents a straight line passing through origin inclined x-axis (slope -g)
General
physics-

In circuit shown below, the resistances are given in ohm and the battery is assumed ideal with emf equal to 3V. The voltage across the resistance R subscript 4 end subscript is

Equivalent resistance of the given network
R subscript e q end subscript equals 75 capital omega
∴ Total current through battery,
i equals fraction numerator 3 over denominator 75 end fraction
i subscript 1 end subscript equals i subscript 2 end subscript equals fraction numerator 3 over denominator 75 cross times 2 end fraction equals fraction numerator 3 over denominator 150 end fraction

Current through resistance
R subscript 4 end subscript equals fraction numerator 3 over denominator 150 end fraction cross times fraction numerator 60 over denominator open parentheses 30 plus 60 close parentheses end fraction
equals fraction numerator 3 over denominator 150 end fraction cross times fraction numerator 60 over denominator 90 end fraction
equals fraction numerator 2 over denominator 150 end fraction A
V subscript 4 end subscript equals i subscript 4 end subscript cross times R subscript 4 end subscript
equals fraction numerator 2 over denominator 150 end fraction cross times 30
equals fraction numerator 2 over denominator 5 end fraction equals 0.4 blank v o l t

In circuit shown below, the resistances are given in ohm and the battery is assumed ideal with emf equal to 3V. The voltage across the resistance R subscript 4 end subscript is

physics-General
Equivalent resistance of the given network
R subscript e q end subscript equals 75 capital omega
∴ Total current through battery,
i equals fraction numerator 3 over denominator 75 end fraction
i subscript 1 end subscript equals i subscript 2 end subscript equals fraction numerator 3 over denominator 75 cross times 2 end fraction equals fraction numerator 3 over denominator 150 end fraction

Current through resistance
R subscript 4 end subscript equals fraction numerator 3 over denominator 150 end fraction cross times fraction numerator 60 over denominator open parentheses 30 plus 60 close parentheses end fraction
equals fraction numerator 3 over denominator 150 end fraction cross times fraction numerator 60 over denominator 90 end fraction
equals fraction numerator 2 over denominator 150 end fraction A
V subscript 4 end subscript equals i subscript 4 end subscript cross times R subscript 4 end subscript
equals fraction numerator 2 over denominator 150 end fraction cross times 30
equals fraction numerator 2 over denominator 5 end fraction equals 0.4 blank v o l t
General
physics-

The resistance across A blank a n d blank Bin the figure below will be

Resistance are in parallel
therefore blank R subscript e q end subscript equals fraction numerator R over denominator 3 end fraction

The resistance across A blank a n d blank Bin the figure below will be

physics-General
Resistance are in parallel
therefore blank R subscript e q end subscript equals fraction numerator R over denominator 3 end fraction
General
physics-

Five equal resistances, each of resistance R commaare connected as shown in figure below. A bettery of V volt is connected between A blank a n d blank B.The current flowing in F C will be

I equals fraction numerator V over denominator R end fraction

therefore blank C u r r e n t blank i n blank F C equals fraction numerator 1 over denominator 2 end fraction equals fraction numerator V over denominator 2 R end fraction

Five equal resistances, each of resistance R commaare connected as shown in figure below. A bettery of V volt is connected between A blank a n d blank B.The current flowing in F C will be

physics-General
I equals fraction numerator V over denominator R end fraction

therefore blank C u r r e n t blank i n blank F C equals fraction numerator 1 over denominator 2 end fraction equals fraction numerator V over denominator 2 R end fraction