Physics-
General
Easy

Question

The adjacent graph shows the extra extension (Vx) of a wire length 1m suspended from the top of a roof at one end with an extra load Vw connected to the other end . If the cross sectional area of the wire is 10 to the power of negative 6 end exponent m to the power of 2 end exponent, calculate the Young’s modulus of the material of the wire.

  1. 2 cross times 10 to the power of 11 end exponent N divided by m to the power of 2 end exponent    
  2. 2 cross times 10 to the power of negative 11 end exponent N divided by m to the power of 2 end exponent    
  3. 3 cross times 10 to the power of 13 end exponent N divided by m to the power of 3 end exponent    
  4. 2 cross times 10 to the power of 16 end exponent N divided by m to the power of 2 end exponent    

The correct answer is: 2 cross times 10 to the power of 11 end exponent N divided by m to the power of 2 end exponent

Book A Free Demo

+91

Grade*

Related Questions to study

General
chemistry-

Catalyst only

Catalyst only

chemistry-General
General
maths-

Iftext end text f colon left square bracket negative 2 comma 2 right square bracket rightwards arrow R text  is end text defined by f left parenthesis x right parenthesis equals open curly brackets table row cell fraction numerator square root of 1 plus c x end root minus square root of 1 minus c x end root over denominator x end fraction comma text end text text f end text text o end text text r end text text end text minus 2 less or equal than x less than 0 end cell row cell fraction numerator x plus 3 over denominator x plus 1 end fraction comma text end text text f end text text o end text text r end text text end text 0 less or equal than x less or equal than 2 end cell end table close is continuous on [-2,2] then c =

f left parenthesis 0 plus right parenthesis equals f left parenthesis 0 minus right parenthesis

Iftext end text f colon left square bracket negative 2 comma 2 right square bracket rightwards arrow R text  is end text defined by f left parenthesis x right parenthesis equals open curly brackets table row cell fraction numerator square root of 1 plus c x end root minus square root of 1 minus c x end root over denominator x end fraction comma text end text text f end text text o end text text r end text text end text minus 2 less or equal than x less than 0 end cell row cell fraction numerator x plus 3 over denominator x plus 1 end fraction comma text end text text f end text text o end text text r end text text end text 0 less or equal than x less or equal than 2 end cell end table close is continuous on [-2,2] then c =

maths-General
f left parenthesis 0 plus right parenthesis equals f left parenthesis 0 minus right parenthesis
General
Maths-

L subscript t not stretchy rightwards arrow 2 end subscript fraction numerator vertical line x minus 2 vertical line over denominator x minus 2 end fraction

L subscript t not stretchy rightwards arrow 2 end subscript fraction numerator vertical line x minus 2 vertical line over denominator x minus 2 end fraction

Maths-General
General
maths-

Let f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fractionand f left parenthesis 0 right parenthesis equals 0, then the value of f left parenthesis 1 right parenthesis be

f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction
Let x equals tan invisible function application theta comma d x equals sec to the power of 2 end exponent invisible function application theta d theta equals left parenthesis 1 plus x to the power of 2 end exponent right parenthesis. d theta
f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta sec to the power of 2 end exponent invisible function application theta d theta over denominator sec to the power of 2 end exponent invisible function application theta left parenthesis 1 plus sec invisible function application theta right parenthesis end fraction
equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta d theta over denominator 1 plus sec invisible function application theta end fraction theta equals not stretchy integral fraction numerator sin to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction equals not stretchy integral fraction numerator 1 minus cos to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction
equals not stretchy integral fraction numerator left parenthesis 1 minus cos invisible function application theta right parenthesis d. theta over denominator cos invisible function application theta end fraction equals not stretchy integral sec invisible function application theta d theta minus not stretchy integral d theta
equals log invisible function application left parenthesis x plus square root of 1 plus x to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application x plus c
f left parenthesis 0 right parenthesis equals log invisible function application left parenthesis 0 plus square root of 1 plus 0 end root minus tan to the power of negative 1 end exponent invisible function application left parenthesis 0 right parenthesis plus c
0 equals log invisible function application 1 minus 0 plus c Þ c equals 0
f left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 1 plus 1 to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 2 right parenthesis minus fraction numerator pi over denominator 4 end fraction.

Let f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fractionand f left parenthesis 0 right parenthesis equals 0, then the value of f left parenthesis 1 right parenthesis be

maths-General
f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction
Let x equals tan invisible function application theta comma d x equals sec to the power of 2 end exponent invisible function application theta d theta equals left parenthesis 1 plus x to the power of 2 end exponent right parenthesis. d theta
f left parenthesis x right parenthesis equals not stretchy integral fraction numerator x to the power of 2 end exponent d x over denominator left parenthesis 1 plus x to the power of 2 end exponent right parenthesis open parentheses 1 plus square root of 1 plus x to the power of 2 end exponent end root close parentheses end fraction equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta sec to the power of 2 end exponent invisible function application theta d theta over denominator sec to the power of 2 end exponent invisible function application theta left parenthesis 1 plus sec invisible function application theta right parenthesis end fraction
equals not stretchy integral fraction numerator tan to the power of 2 end exponent invisible function application theta d theta over denominator 1 plus sec invisible function application theta end fraction theta equals not stretchy integral fraction numerator sin to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction equals not stretchy integral fraction numerator 1 minus cos to the power of 2 end exponent invisible function application theta d theta over denominator cos invisible function application theta left parenthesis 1 plus cos invisible function application theta right parenthesis end fraction
equals not stretchy integral fraction numerator left parenthesis 1 minus cos invisible function application theta right parenthesis d. theta over denominator cos invisible function application theta end fraction equals not stretchy integral sec invisible function application theta d theta minus not stretchy integral d theta
equals log invisible function application left parenthesis x plus square root of 1 plus x to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application x plus c
f left parenthesis 0 right parenthesis equals log invisible function application left parenthesis 0 plus square root of 1 plus 0 end root minus tan to the power of negative 1 end exponent invisible function application left parenthesis 0 right parenthesis plus c
0 equals log invisible function application 1 minus 0 plus c Þ c equals 0
f left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 1 plus 1 to the power of 2 end exponent end root right parenthesis minus tan to the power of negative 1 end exponent invisible function application left parenthesis 1 right parenthesis equals log invisible function application left parenthesis 1 plus square root of 2 right parenthesis minus fraction numerator pi over denominator 4 end fraction.
General
biology

Match correctly the following and choose the correct option

Match correctly the following and choose the correct option

biologyGeneral
General
chemistry-

Colloidal sol is :

Colloidal sol is :

chemistry-General
General
Maths-

L t subscript y not stretchy rightwards arrow 0 end subscript fraction numerator sin invisible function application left parenthesis a plus b x right parenthesis minus sin invisible function application left parenthesis a minus b x right parenthesis over denominator x end fraction

L t subscript y not stretchy rightwards arrow 0 end subscript fraction numerator sin invisible function application left parenthesis a plus b x right parenthesis minus sin invisible function application left parenthesis a minus b x right parenthesis over denominator x end fraction

Maths-General
General
physics-

In the given circuit, no current is passing through the galvanometer. If the cross sectional diameter of the wire AB is doubled, then for null point of galvanometer, the value of AC would be:

In the given circuit, no current is passing through the galvanometer. If the cross sectional diameter of the wire AB is doubled, then for null point of galvanometer, the value of AC would be:

physics-General
General
physics-

The number of circular division on the shown screw gauge is 50. It moves 0.5 mm on main scale for one complete rotation and main scale has 1/2 mm marks. The diameter of the ball is:

The number of circular division on the shown screw gauge is 50. It moves 0.5 mm on main scale for one complete rotation and main scale has 1/2 mm marks. The diameter of the ball is:

physics-General
General
maths-

text  Lt  end text subscript x plus x over 2 end subscript fraction numerator cos invisible function application x over denominator x minus pi over 2 end fraction

text  Lt  end text subscript x plus x over 2 end subscript fraction numerator cos invisible function application x over denominator x minus pi over 2 end fraction

maths-General
General
chemistry-

The decomposition of H subscript 2 O subscript 2 may be checked by adding a small quantity of phosphoric acid. This is an example of :

The decomposition of H subscript 2 O subscript 2 may be checked by adding a small quantity of phosphoric acid. This is an example of :

chemistry-General
General
Maths-

L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

Maths-General
General
maths-

not stretchy integral e to the power of x to the power of 2 end exponent end exponent x   d x is equal to

not stretchy integral e to the power of x to the power of 2 end exponent end exponent. x d x equals fraction numerator 1 over denominator 2 end fraction not stretchy integral left parenthesis 2 x right parenthesis e to the power of x to the power of 2 end exponent end exponent d x
equals fraction numerator 1 over denominator 2 end fraction not stretchy integral e to the power of t end exponent d t equals fraction numerator 1 over denominator 2 end fraction e to the power of t end exponent equals fraction numerator 1 over denominator 2 end fraction e to the power of x to the power of 2 end exponent end exponent, (Put x to the power of 2 end exponent equals t rightwards double arrow d t equals 2 x d x right parenthesis.

not stretchy integral e to the power of x to the power of 2 end exponent end exponent x   d x is equal to

maths-General
not stretchy integral e to the power of x to the power of 2 end exponent end exponent. x d x equals fraction numerator 1 over denominator 2 end fraction not stretchy integral left parenthesis 2 x right parenthesis e to the power of x to the power of 2 end exponent end exponent d x
equals fraction numerator 1 over denominator 2 end fraction not stretchy integral e to the power of t end exponent d t equals fraction numerator 1 over denominator 2 end fraction e to the power of t end exponent equals fraction numerator 1 over denominator 2 end fraction e to the power of x to the power of 2 end exponent end exponent, (Put x to the power of 2 end exponent equals t rightwards double arrow d t equals 2 x d x right parenthesis.
General
chemistry-

Which of the following is a heterogeneous catalysis?

Which of the following is a heterogeneous catalysis?

chemistry-General
General
chemistry-

Which type of metals form effective catalysts?

Which type of metals form effective catalysts?

chemistry-General