Maths-

General

Easy

### Question

#### If then ascending order of A, B, C.

- A,B,C
- B,C,A
- C,A,B
- B,A,C

### Hint:

In this question using the equation we will find the value of A, B and C. After finding the values we will arrange the values in ascending order to find the required sequence.

#### The correct answer is: B,C,A

## Book A Free Demo

+91

Grade*

Select Grade

### Related Questions to study

Maths-

#### The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

Complete step by step solution:

We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,

Total number of Digits = 7

We are given that the digit two occurs exactly twice in each number.

Thus, the digit two occurs twice in the seven digit number.

Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.

Total number of ways that the digit two occurs exactly twice in each number =

Now, the remaining five digits can be written using two digits 1 and 3 in ways.

We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore

Total number of seven digit number =

Now by using the formula

, we get

Total number of seven digit number =

We know that the factorial can be written by the formula n! = n(n-1)! , so we get

Total number of seven digit number =

Total number of seven digit number =

Simplifying the expression, we get

Total number of seven digit number =

Multiplying the terms, we get

Total number of seven digit number = 672

Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.

We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,

Total number of Digits = 7

We are given that the digit two occurs exactly twice in each number.

Thus, the digit two occurs twice in the seven digit number.

Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.

Total number of ways that the digit two occurs exactly twice in each number =

Now, the remaining five digits can be written using two digits 1 and 3 in ways.

We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore

Total number of seven digit number =

Now by using the formula

, we get

Total number of seven digit number =

We know that the factorial can be written by the formula n! = n(n-1)! , so we get

Total number of seven digit number =

Total number of seven digit number =

Simplifying the expression, we get

Total number of seven digit number =

Multiplying the terms, we get

Total number of seven digit number = 672

Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.

#### The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

Maths-General

Complete step by step solution:

We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,

Total number of Digits = 7

We are given that the digit two occurs exactly twice in each number.

Thus, the digit two occurs twice in the seven digit number.

Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.

Total number of ways that the digit two occurs exactly twice in each number =

Now, the remaining five digits can be written using two digits 1 and 3 in ways.

We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore

Total number of seven digit number =

Now by using the formula

, we get

Total number of seven digit number =

We know that the factorial can be written by the formula n! = n(n-1)! , so we get

Total number of seven digit number =

Total number of seven digit number =

Simplifying the expression, we get

Total number of seven digit number =

Multiplying the terms, we get

Total number of seven digit number = 672

Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.

We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,

Total number of Digits = 7

We are given that the digit two occurs exactly twice in each number.

Thus, the digit two occurs twice in the seven digit number.

Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.

Total number of ways that the digit two occurs exactly twice in each number =

Now, the remaining five digits can be written using two digits 1 and 3 in ways.

We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore

Total number of seven digit number =

Now by using the formula

, we get

Total number of seven digit number =

We know that the factorial can be written by the formula n! = n(n-1)! , so we get

Total number of seven digit number =

Total number of seven digit number =

Simplifying the expression, we get

Total number of seven digit number =

Multiplying the terms, we get

Total number of seven digit number = 672

Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.

maths-

#### The centre and radius of the circle are respectively

#### The centre and radius of the circle are respectively

maths-General

maths-

#### The centre of the circle is

#### The centre of the circle is

maths-General

maths-

#### The equation of the circle with centre at , which passes through the point is

#### The equation of the circle with centre at , which passes through the point is

maths-General

maths-

#### The foot of the perpendicular from on the line is

#### The foot of the perpendicular from on the line is

maths-General

maths-

#### The foot of the perpendicular from the pole on the line is

#### The foot of the perpendicular from the pole on the line is

maths-General

maths-

#### The equation of the line parallel to and passing through is

#### The equation of the line parallel to and passing through is

maths-General

Maths-

#### The line passing through the points , (3,0) is

#### The line passing through the points , (3,0) is

Maths-General

Maths-

#### Statement-I : If then A=

Statement-II : If then

Which of the above statements is true

#### Statement-I : If then A=

Statement-II : If then

Which of the above statements is true

Maths-General

Maths-

#### If b > a , then the equation, (x - a) (x - b) - 1 = 0, has:

#### If b > a , then the equation, (x - a) (x - b) - 1 = 0, has:

Maths-General

Maths-

#### If be that roots where , such that and then the number of integral solutions of λ is

#### If be that roots where , such that and then the number of integral solutions of λ is

Maths-General

Maths-

#### If α,β then the equation with roots will be

#### If α,β then the equation with roots will be

Maths-General

maths-

#### The equation of the directrix of the conic is

#### The equation of the directrix of the conic is

maths-General

maths-

#### The conic with length of latus rectum 6 and eccentricity is

#### The conic with length of latus rectum 6 and eccentricity is

maths-General

maths-

#### For the circle centre and radius are

#### For the circle centre and radius are

maths-General