Maths-
General
Easy

Question

Let A = open parentheses table row 1 2 row 3 4 end table close parentheses and B = open parentheses table row a 0 row 0 b end table close parentheses , a, b element of N. Then

  1. there exist more than one but finite number of B's such that AB = BA    
  2. there exist exactly one B such that AB = BA    
  3. there exist infinitely many B's such that AB = BA    
  4. there cannot exist any B such that AB = BA    

hintHint:

G i v e n space A equals open square brackets table row 1 2 row 3 4 end table close square brackets space B equals open square brackets table row a 0 row 0 b end table close square brackets
F i n d i n g space A B
A B equals open square brackets table row cell a plus 2 cross times 0 end cell cell 1 cross times 0 plus 2 cross times b end cell row cell 3 x a plus 4 x 0 end cell cell 3 x 0 plus 4 x b end cell end table close square brackets
A B equals open square brackets table row a cell 2 b end cell row cell 3 a end cell cell 4 b end cell end table close square brackets
F i n d i n g space B A
B A equals open square brackets table row cell a plus 0 x 3 end cell cell 2 a plus 0 x 4 end cell row cell 0 x 1 plus 3 b end cell cell 0 x 2 plus 4 b end cell end table close square brackets
B A equals open square brackets table row a cell 2 a end cell row cell 3 b end cell cell 4 b end cell end table close square brackets
I f space A B equals B A
open square brackets table row a cell 2 b end cell row cell 3 a end cell cell 4 b end cell end table close square brackets equals open square brackets table row a cell 2 a end cell row cell 3 b end cell cell 4 b end cell end table close square brackets
C o m p a r i n g space e a c h space e l e m e n t space w e space g e t
a equals a comma 2 b equals 2 a
rightwards double arrow a equals b
therefore T h e r e space a r e space i n f i n i t e l y space m a n y space b apostrophe s space f o r space w h i c h space A B equals B A

The correct answer is: there exist infinitely many B's such that AB = BA


    Given the matrices A and B we need to find the correct option.

    Therefore, there are infinitely many b's for which AB=BA

    Related Questions to study

    General
    Maths-

    If A and B are square matrices of size n × n such that A2 – B2 = (A – B) (A + B), then which of the following will be always true –

    If A and B are square matrices of size n × n such that A2 – B2 = (A – B) (A + B), then which of the following will be always true –

    Maths-General
    General
    Maths-

    If A = open square brackets table row 1 0 row 1 1 end table close square brackets and I =open square brackets table row 1 0 row 0 1 end table close square brackets , then which one of the following holds for all n greater or equal than 1, by the principle of mathematical induction -

    If A = open square brackets table row 1 0 row 1 1 end table close square brackets and I =open square brackets table row 1 0 row 0 1 end table close square brackets , then which one of the following holds for all n greater or equal than 1, by the principle of mathematical induction -

    Maths-General
    General
    Maths-

    If A2 – A + I = 0, then the inverse of A is

    If A2 – A + I = 0, then the inverse of A is

    Maths-General
    parallel
    General
    Maths-

    Let A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses. If B is the inverse of matrix A, then alpha is

    Let A = open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses and (10) B = open parentheses table row 4 2 2 row cell negative 5 end cell 0 alpha row 1 cell negative 2 end cell 3 end table close parentheses. If B is the inverse of matrix A, then alpha is

    Maths-General
    General
    Maths-

    Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

    Let A = open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

    Maths-General
    General
    chemistry-

    Bleaching powder has the molecular formula:

    Bleaching powder has the molecular formula:

    chemistry-General
    parallel
    General
    Maths-

    If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

    If A = open square brackets table row a b row b a end table close square brackets and A2 = open square brackets table row alpha beta row beta alpha end table close square brackets, then

    Maths-General
    General
    maths-

    If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

    If A=open square brackets table row 1 2 3 row 3 1 2 row 2 3 1 end table close square brackets, B =open square brackets table row cell negative 5 end cell 7 1 row 1 cell negative 5 end cell 7 row 7 1 cell negative 5 end cell end table close square brackets then AB =

    maths-General
    General
    maths-

    If A =open square brackets table row i 0 row 0 cell negative i end cell end table close square brackets, B =open square brackets table row 0 cell negative 1 end cell row 1 0 end table close square brackets and C =open square brackets table row 0 i row i 0 end table close square brackets, then A2 = B2 =C2 =

    If A =open square brackets table row i 0 row 0 cell negative i end cell end table close square brackets, B =open square brackets table row 0 cell negative 1 end cell row 1 0 end table close square brackets and C =open square brackets table row 0 i row i 0 end table close square brackets, then A2 = B2 =C2 =

    maths-General
    parallel
    General
    maths-

    If Ai = open square brackets table row cell a to the power of i end exponent end cell cell b to the power of i end exponent end cell row cell b to the power of i end exponent end cell cell a to the power of i end exponent end cell end table close square bracketsand if |a|<1, |b|<1, thennot stretchy sum subscript i equals 1 end subscript superscript infinity end superscript blankdet (Ai) is equal to-

    If Ai = open square brackets table row cell a to the power of i end exponent end cell cell b to the power of i end exponent end cell row cell b to the power of i end exponent end cell cell a to the power of i end exponent end cell end table close square bracketsand if |a|<1, |b|<1, thennot stretchy sum subscript i equals 1 end subscript superscript infinity end superscript blankdet (Ai) is equal to-

    maths-General
    General
    maths-

    If matrix A =open square brackets table row 1 0 cell negative 1 end cell row 3 4 5 row 0 6 7 end table close square bracketsand its inverse is denoted byA to the power of negative 1 end exponent equals open square brackets table row cell a subscript 11 end subscript end cell cell a subscript 12 end subscript end cell cell a subscript 13 end subscript end cell row cell a subscript 21 end subscript end cell cell a subscript 22 end subscript end cell cell a subscript 23 end subscript end cell row cell a subscript 31 end subscript end cell cell a subscript 32 end subscript end cell cell a subscript 33 end subscript end cell end table close square brackets, then the value of a23 is equal to-

    If matrix A =open square brackets table row 1 0 cell negative 1 end cell row 3 4 5 row 0 6 7 end table close square bracketsand its inverse is denoted byA to the power of negative 1 end exponent equals open square brackets table row cell a subscript 11 end subscript end cell cell a subscript 12 end subscript end cell cell a subscript 13 end subscript end cell row cell a subscript 21 end subscript end cell cell a subscript 22 end subscript end cell cell a subscript 23 end subscript end cell row cell a subscript 31 end subscript end cell cell a subscript 32 end subscript end cell cell a subscript 33 end subscript end cell end table close square brackets, then the value of a23 is equal to-

    maths-General
    General
    Maths-

    For the matrix A =open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which of the following is correct

    For the matrix A =open square brackets table row 1 1 0 row 1 2 1 row 2 1 0 end table close square brackets, which of the following is correct

    Maths-General
    parallel
    General
    Maths-

    If a matrix A is such that3A3 + 2A2 + 5A + I = 0, then A–1 is equal to-

    If a matrix A is such that3A3 + 2A2 + 5A + I = 0, then A–1 is equal to-

    Maths-General
    General
    Maths-

    Let F(alpha) =open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, where alpha  element of R. Then (F(alpha))–1 is equal to

    Let F(alpha) =open square brackets table row cell cos invisible function application alpha end cell cell negative sin invisible function application alpha end cell 0 row cell sin invisible function application alpha end cell cell cos invisible function application alpha end cell 0 row 0 0 1 end table close square brackets, where alpha  element of R. Then (F(alpha))–1 is equal to

    Maths-General
    General
    Maths-

    If A= open square brackets table row 1 3 row 3 4 end table close square brackets and A2 – kA – 5I2 = O, then the value of k is-

    If A= open square brackets table row 1 3 row 3 4 end table close square brackets and A2 – kA – 5I2 = O, then the value of k is-

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.