Maths-

General

Easy

Question

# Q is a point on the auxiliary circle corresponding to the point P of the ellipse = 1. If T is the foot of the perpendicular dropped from the focus S. onto the tangent to the auxiliary circle at Q then the SPT is -

- isosceles
- equilateral
- right angled
- right isosceles

## The correct answer is: isosceles

### Related Questions to study

physics-

### A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :

(Force diagram in the frame of the car) Applying Newton’s law perpendicular to string mg sinq = ma cos q

Applying Newton’s law along string

Applying Newton’s law along string

### A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :

physics-General

(Force diagram in the frame of the car) Applying Newton’s law perpendicular to string mg sinq = ma cos q

Applying Newton’s law along string

Applying Newton’s law along string

physics-

### Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:

In this case spring force is zero initially F.B.D. of A and B

### Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:

physics-General

In this case spring force is zero initially F.B.D. of A and B

physics-

### A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:

Let the initial compression of spring be Then the acceleration after the block travels a distance x is

\ The graph of a vs x is

\ The graph of a vs x is

### A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:

physics-General

Let the initial compression of spring be Then the acceleration after the block travels a distance x is

\ The graph of a vs x is

\ The graph of a vs x is

physics-

### A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is

### A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is

physics-General

physics-

### In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is . The normal reaction of the wall on the ladder is and that of the floor is . If the ladder is about to slip, then

### In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is . The normal reaction of the wall on the ladder is and that of the floor is . If the ladder is about to slip, then

physics-General

physics-

### A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from

tothe frictional force f versus P graph will look like

### A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from

tothe frictional force f versus P graph will look like

physics-General

physics-

### A mass ‘m’ is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release?

### A mass ‘m’ is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release?

physics-General

physics-

### Two fixed frictionless inclined planes making an angle and with the vertical are shown in the figure. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B ?

### Two fixed frictionless inclined planes making an angle and with the vertical are shown in the figure. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B ?

physics-General

physics-

### The upper half of an inclined plane with inclination null= 0.5]

### The upper half of an inclined plane with inclination null= 0.5]

physics-General

maths-

### The tangent and the normal at a point P on an ellipse meet its major axis in T and T' so that TT' = a. Prove that the eccentricity angle of P is given by : (where e is eccentricity of the ellipse) is equal to -

### The tangent and the normal at a point P on an ellipse meet its major axis in T and T' so that TT' = a. Prove that the eccentricity angle of P is given by : (where e is eccentricity of the ellipse) is equal to -

maths-General

maths-

maths-General

physics-

### For the indicator diagram given below, select wrong statement

### For the indicator diagram given below, select wrong statement

physics-General

physics-

### Two blocks of masses and are connected with a massless spring and placed over a plank moving with an acceleration ‘a’ as shown in figure. The coefficient of friction between the blocks and platform is .

### Two blocks of masses and are connected with a massless spring and placed over a plank moving with an acceleration ‘a’ as shown in figure. The coefficient of friction between the blocks and platform is .

physics-General

maths-

maths-General

physics-

### A given mass of a gas expands from the state A to the state B by three paths 1,2 and 3 as shown in the figure If W_{1}, W_{2} and W_{3} respectively be the work done by the gas along the three paths then

### A given mass of a gas expands from the state A to the state B by three paths 1,2 and 3 as shown in the figure If W_{1}, W_{2} and W_{3} respectively be the work done by the gas along the three paths then

physics-General