### Question

#### The velocity-time and acceleration-time graphs of a particle are given as

Its position-time graph may be given as

#### The correct answer is:

## Book A Free Demo

Grade*

### Related Questions to study

#### A body is moving in a straight line a shown in velocity-time graph. The displacement and distance travelled by in 8s are respectively

=20m

#### A body is moving in a straight line a shown in velocity-time graph. The displacement and distance travelled by in 8s are respectively

=20m

#### In order to raise a mass of 100 kg a man of mass 60 kg fastens a rope to it and passes the rope over a smooth pulley. He climbs the rope with an acceleration 5g/4 relative to rope. The tension in the rope is

#### In order to raise a mass of 100 kg a man of mass 60 kg fastens a rope to it and passes the rope over a smooth pulley. He climbs the rope with an acceleration 5g/4 relative to rope. The tension in the rope is

Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in figure. Friction is absent everywhere. When the system is released from rest

Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in figure. Friction is absent everywhere. When the system is released from rest

#### The velocity-time graph of a particle in linear motion is shown. Both and are in SI units. What is the displacement of the particle from the origin after 8 s?

m

#### The velocity-time graph of a particle in linear motion is shown. Both and are in SI units. What is the displacement of the particle from the origin after 8 s?

m

#### If has a real solution then

#### If has a real solution then

In the following arrangement the system is initially at rest. The 5 kg block is now released. Assuming the pulleys and string to be massless and smooth, the acceleration of blocks is

In the following arrangement the system is initially at rest. The 5 kg block is now released. Assuming the pulleys and string to be massless and smooth, the acceleration of blocks is

#### The equation has

#### The equation has

#### A particle is moving along the circle in anticlockwise direction. The x–y plane is a rough horizontal stationary surface. At the point , the unit vector in the direction of friction on the particle is

#### A particle is moving along the circle in anticlockwise direction. The x–y plane is a rough horizontal stationary surface. At the point , the unit vector in the direction of friction on the particle is

#### If then the solution set in is

#### If then the solution set in is

A man of mass 50 kg is pulling on a plank of mass 100 kg kept on a smooth floor as shown with force of 100 N. If both man & plank move together, find force of friction acting on man

A man of mass 50 kg is pulling on a plank of mass 100 kg kept on a smooth floor as shown with force of 100 N. If both man & plank move together, find force of friction acting on man

#### Solutions in the given Interval: The value of satisfying are

#### Solutions in the given Interval: The value of satisfying are

#### The area of the equilateral triangle which containing three coins of unity radius is

Þ

Þ Similarly, and

Hence, side

Þ Area of equilateral triangle

= sq units.

#### The area of the equilateral triangle which containing three coins of unity radius is

Þ

Þ Similarly, and

Hence, side

Þ Area of equilateral triangle

= sq units.

#### If then x =

#### If then x =

#### The curvesandcut each other at the common point at an angle

#### The curvesandcut each other at the common point at an angle

Block A of mass m is placed over a wedge B of same mass m. Assuming all surfaces to be smooth. The displacement of block A in 1 s if the system is released from rest is

Block A of mass m is placed over a wedge B of same mass m. Assuming all surfaces to be smooth. The displacement of block A in 1 s if the system is released from rest is