Physics-
General
Easy

Question

What is the equivalent resistance between A blank a n d blank B in the given circuit?

  1. 4 capital omega    
  2. 2 capital omega    
  3. fraction numerator 8 over denominator 3 end fraction capital omega    
  4. fraction numerator 3 over denominator 8 end fraction capital omega    

The correct answer is: fraction numerator 8 over denominator 3 end fraction capital omega


    R subscript 1 end subscript and R subscript 2 end subscript are in series
    therefore blank R subscript 12 end subscript equals R subscript 1 end subscript plus R subscript 2 end subscript equals 4 capital omega

    R subscript 12 end subscript a n d R subscript 3 end subscript are in parallel
    R subscript 123 end subscript equals fraction numerator R subscript 3 end subscript cross times R subscript 12 end subscript over denominator R subscript 3 end subscript plus R subscript 12 end subscript end fraction
    equals fraction numerator 4 cross times 4 over denominator 4 plus 4 end fraction
    equals 2 capital omega
    R subscript 123 end subscriptand R subscript 4 end subscript are in series
    therefore blank R subscript 1234 end subscript equals R subscript 123 end subscript plus R subscript 4 end subscript
    equals 2 capital omega plus 2 capital omega
    equals 4 capital omega
    R subscript 1234 end subscript and R subscript 5 end subscript are in parallel
    therefore R subscript 12345 end subscript equals 2 capital omega
    R subscript 12345 end subscript and R subscript 6 end subscript are in series
    2 capital omega plus 2 capital omega equals 4 capital omega
    equals R subscript 123456 end subscript
    Now, R subscript 123456 end subscriptand R subscript 7 end subscriptare in parallel
    therefore R subscript c o m b end subscript equals fraction numerator 4 cross times 8 over denominator 4 plus 8 end fraction
    equals fraction numerator 32 over denominator 12 end fraction equals fraction numerator 8 over denominator 3 end fraction capital omega

    Related Questions to study

    General
    physics-

    The current in the 1capital omega resistor shown in the circuit is

    In the given circuit 4capital omega resistors are connected in parallel, this combination is connected in series with 1capital omega resistance.

    therefore blank fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 2 over denominator 4 end fraction equals fraction numerator 1 over denominator 2 end fraction
    ⟹ R to the power of ´ end exponent equals 2 capital omega
    Also, R’’=2 capital omega +1capital omega =3capital omega
    From Ohm’s law, V equals i R
    therefore blank i equals fraction numerator V over denominator R end fraction equals fraction numerator 6 over denominator 3 end fraction equals 2 A

    The current in the 1capital omega resistor shown in the circuit is

    physics-General
    In the given circuit 4capital omega resistors are connected in parallel, this combination is connected in series with 1capital omega resistance.

    therefore blank fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 2 over denominator 4 end fraction equals fraction numerator 1 over denominator 2 end fraction
    ⟹ R to the power of ´ end exponent equals 2 capital omega
    Also, R’’=2 capital omega +1capital omega =3capital omega
    From Ohm’s law, V equals i R
    therefore blank i equals fraction numerator V over denominator R end fraction equals fraction numerator 6 over denominator 3 end fraction equals 2 A
    General
    physics-

    The current in the 1capital omega resistor shown in the circuit is

    In the given circuit 4capital omega resistors are connected in parallel, this combination is connected in series with 1capital omega resistance.

    therefore blank fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 2 over denominator 4 end fraction equals fraction numerator 1 over denominator 2 end fraction
    ⟹ R to the power of ´ end exponent equals 2 capital omega
    Also, R’’=2 capital omega +1capital omega =3capital omega
    From Ohm’s law, V equals i R
    therefore blank i equals fraction numerator V over denominator R end fraction equals fraction numerator 6 over denominator 3 end fraction equals 2 A

    The current in the 1capital omega resistor shown in the circuit is

    physics-General
    In the given circuit 4capital omega resistors are connected in parallel, this combination is connected in series with 1capital omega resistance.

    therefore blank fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 end fraction plus fraction numerator 1 over denominator 4 end fraction equals fraction numerator 2 over denominator 4 end fraction equals fraction numerator 1 over denominator 2 end fraction
    ⟹ R to the power of ´ end exponent equals 2 capital omega
    Also, R’’=2 capital omega +1capital omega =3capital omega
    From Ohm’s law, V equals i R
    therefore blank i equals fraction numerator V over denominator R end fraction equals fraction numerator 6 over denominator 3 end fraction equals 2 A
    General
    physics-

    The total current supplied to the given circuit by the battery is

    The equivalent circuit of the given circuit is as shown

    Resistances 6capital omega and 2capital omega are in parallel
    therefore blank R to the power of ´ end exponent equals fraction numerator 6 cross times 2 over denominator 6 plus 2 end fraction equals fraction numerator 3 over denominator 2 end fraction capital omega
    Resistances fraction numerator 3 over denominator 2 end fraction capital omega blank a n d blank 1.5 capital omega blank a r e blank i n blank s e r i e s
    therefore blank R to the power of ´ ´ end exponent equals fraction numerator 3 over denominator 2 end fraction plus 1.5 equals 3 capital omega blank
    Resistances 3capital omega and 3capital omega are in parallel
    therefore blank R equals fraction numerator 3 cross times 3 over denominator 3 plus 3 end fraction equals fraction numerator 3 over denominator 2 end fraction
    The current, I equals fraction numerator V over denominator R end fraction
    equals fraction numerator 9 over denominator 3 divided by 2 end fraction equals 6 A

    The total current supplied to the given circuit by the battery is

    physics-General
    The equivalent circuit of the given circuit is as shown

    Resistances 6capital omega and 2capital omega are in parallel
    therefore blank R to the power of ´ end exponent equals fraction numerator 6 cross times 2 over denominator 6 plus 2 end fraction equals fraction numerator 3 over denominator 2 end fraction capital omega
    Resistances fraction numerator 3 over denominator 2 end fraction capital omega blank a n d blank 1.5 capital omega blank a r e blank i n blank s e r i e s
    therefore blank R to the power of ´ ´ end exponent equals fraction numerator 3 over denominator 2 end fraction plus 1.5 equals 3 capital omega blank
    Resistances 3capital omega and 3capital omega are in parallel
    therefore blank R equals fraction numerator 3 cross times 3 over denominator 3 plus 3 end fraction equals fraction numerator 3 over denominator 2 end fraction
    The current, I equals fraction numerator V over denominator R end fraction
    equals fraction numerator 9 over denominator 3 divided by 2 end fraction equals 6 A
    parallel
    General
    physics-

    A current of 2A flows in an electric circuit as shown in figure. The potential differenceleft parenthesis V subscript R end subscript minus V subscript S end subscript right parenthesis, in volts( V subscript R end subscript minus V subscript S end subscript are potentials at R and S respectively) is

    Current through each arm
    PRQ and PSQ=1A
    V subscript p end subscript minus V subscript R end subscript equals 3 v
    V subscript p end subscript minus V subscript s end subscript equals 7 V
    From Eqs. (i) and (ii), we get
    V subscript R end subscript minus V subscript s end subscript equals plus 4 V

    A current of 2A flows in an electric circuit as shown in figure. The potential differenceleft parenthesis V subscript R end subscript minus V subscript S end subscript right parenthesis, in volts( V subscript R end subscript minus V subscript S end subscript are potentials at R and S respectively) is

    physics-General
    Current through each arm
    PRQ and PSQ=1A
    V subscript p end subscript minus V subscript R end subscript equals 3 v
    V subscript p end subscript minus V subscript s end subscript equals 7 V
    From Eqs. (i) and (ii), we get
    V subscript R end subscript minus V subscript s end subscript equals plus 4 V
    General
    physics-

    A 3 V battery with negligible internal resistance is connected in a circuit as shown in the figure. The current I, in the circuit will be

    Resistance in the arms AC and BC are in series,

    ∴ R’=3+3=6capital omega
    Now, R’ and 3capital omega are in parallel,
    therefore blank R subscript e q end subscript equals fraction numerator 6 cross times 3 over denominator 6 plus 3 end fraction equals 2 capital omega
    Now, V=IR
    ⟹ I equals fraction numerator 3 over denominator 2 end fraction equals 1.5 A

    A 3 V battery with negligible internal resistance is connected in a circuit as shown in the figure. The current I, in the circuit will be

    physics-General
    Resistance in the arms AC and BC are in series,

    ∴ R’=3+3=6capital omega
    Now, R’ and 3capital omega are in parallel,
    therefore blank R subscript e q end subscript equals fraction numerator 6 cross times 3 over denominator 6 plus 3 end fraction equals 2 capital omega
    Now, V=IR
    ⟹ I equals fraction numerator 3 over denominator 2 end fraction equals 1.5 A
    General
    physics-

    The equivalent resistance between the points A and B will be (each resistance is
    15 capital omega)

    The circuit can be shown as given below

    The equivalent resistance between D and C.
    R subscript D C end subscript equals fraction numerator 15 cross times open parentheses 15 plus 15 close parentheses over denominator 15 plus open parentheses 15 plus 15 close parentheses end fraction
    equals fraction numerator 15 cross times 30 over denominator 15 plus 30 end fraction
    equals fraction numerator 15 cross times 30 over denominator 45 end fraction equals 10 capital omega
    Now, between A and B, the resistance of upper part ADCB,
    R subscript 1 end subscript equals 15 plus 10 plus 15 equals 40 capital omega
    Between A and B, the resistance of middle part AOB
    R subscript 2 end subscript equals 15 plus 15 equals 30 capital omega
    Therefore, equivalent resistance between A and B
    fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator R subscript 1 end subscript end fraction plus fraction numerator 1 over denominator R subscript 2 end subscript end fraction plus fraction numerator 1 over denominator R subscript 3 end subscript end fraction
    equals fraction numerator 1 over denominator 40 end fraction plus fraction numerator 1 over denominator 30 end fraction plus fraction numerator 1 over denominator 15 end fraction
    equals fraction numerator 3 plus 4 plus 8 over denominator 120 end fraction
    equals fraction numerator 15 over denominator 120 end fraction
    ⟹ R to the power of ´ end exponent equals fraction numerator 120 over denominator 15 end fraction equals 8 capital omega

    The equivalent resistance between the points A and B will be (each resistance is
    15 capital omega)

    physics-General
    The circuit can be shown as given below

    The equivalent resistance between D and C.
    R subscript D C end subscript equals fraction numerator 15 cross times open parentheses 15 plus 15 close parentheses over denominator 15 plus open parentheses 15 plus 15 close parentheses end fraction
    equals fraction numerator 15 cross times 30 over denominator 15 plus 30 end fraction
    equals fraction numerator 15 cross times 30 over denominator 45 end fraction equals 10 capital omega
    Now, between A and B, the resistance of upper part ADCB,
    R subscript 1 end subscript equals 15 plus 10 plus 15 equals 40 capital omega
    Between A and B, the resistance of middle part AOB
    R subscript 2 end subscript equals 15 plus 15 equals 30 capital omega
    Therefore, equivalent resistance between A and B
    fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator R subscript 1 end subscript end fraction plus fraction numerator 1 over denominator R subscript 2 end subscript end fraction plus fraction numerator 1 over denominator R subscript 3 end subscript end fraction
    equals fraction numerator 1 over denominator 40 end fraction plus fraction numerator 1 over denominator 30 end fraction plus fraction numerator 1 over denominator 15 end fraction
    equals fraction numerator 3 plus 4 plus 8 over denominator 120 end fraction
    equals fraction numerator 15 over denominator 120 end fraction
    ⟹ R to the power of ´ end exponent equals fraction numerator 120 over denominator 15 end fraction equals 8 capital omega
    parallel
    General
    physics-

    There resistances of 4blank capital omega each are connected as shown in figure. If the point D divides the resistance into two equal halves, the resistance between points A and D will be

    The equivalent circuit is given by

    4capital omega and 2capital omega resistances are in series on both sides.
    therefore 4 capital omega plus 2 capital omega equals 6 capital omega
    Then 6capital omega and6capital omega resistances are in parallel on both sides
    fraction numerator 1 over denominator R end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 6 end fraction equals fraction numerator 2 over denominator 6 end fraction equals fraction numerator 1 over denominator 3 end fraction
    R=3capital omega

    There resistances of 4blank capital omega each are connected as shown in figure. If the point D divides the resistance into two equal halves, the resistance between points A and D will be

    physics-General
    The equivalent circuit is given by

    4capital omega and 2capital omega resistances are in series on both sides.
    therefore 4 capital omega plus 2 capital omega equals 6 capital omega
    Then 6capital omega and6capital omega resistances are in parallel on both sides
    fraction numerator 1 over denominator R end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 6 end fraction equals fraction numerator 2 over denominator 6 end fraction equals fraction numerator 1 over denominator 3 end fraction
    R=3capital omega
    General
    physics-

    A particle starts from rest at t equals 0 and moves in a straight line with an acceleration as shown below. The velocity of the particle at t equals 3 s blankis

    Velocity of graph equals Area ofblank a-t graph
    equals open parentheses 4 cross times 1.5 close parentheses minus open parentheses 2 cross times 1 close parentheses equals 4 m divided by s

    A particle starts from rest at t equals 0 and moves in a straight line with an acceleration as shown below. The velocity of the particle at t equals 3 s blankis

    physics-General
    Velocity of graph equals Area ofblank a-t graph
    equals open parentheses 4 cross times 1.5 close parentheses minus open parentheses 2 cross times 1 close parentheses equals 4 m divided by s
    General
    maths-

    Period of sin space open parentheses e to the power of text sont  end text end exponent plus e to the power of text cur  end text end exponent close parentheses is

    Period of sin space open parentheses e to the power of text sont  end text end exponent plus e to the power of text cur  end text end exponent close parentheses is

    maths-General
    parallel
    General
    Maths-

    Period of fraction numerator sin space left parenthesis x plus a right parenthesis over denominator cos space x end fraction

    L e t space f left parenthesis x right parenthesis equals fraction numerator sin left parenthesis x plus a right parenthesis over denominator cos space x end fraction
P r o p e r t y space o f space p e r o d i c space f u n c t i o n space o f space p e r i o d space space T
f space left parenthesis x plus T right parenthesis equals f left parenthesis x right parenthesis
B y space p u t t i n g comma space T space equals space straight pi comma space we space get colon
fraction numerator sin space left parenthesis straight pi plus straight x plus straight a right parenthesis over denominator cos space left parenthesis straight pi plus straight x right parenthesis end fraction
equals fraction numerator negative space sin left parenthesis x plus a right parenthesis over denominator negative space cos space x end fraction
equals fraction numerator sin space left parenthesis x plus a right parenthesis over denominator cos space x end fraction
equals f left parenthesis x right parenthesis
S o comma space t h e space p e r i o d space o f space f left parenthesis x right parenthesis space i s space straight pi.

    Period of fraction numerator sin space left parenthesis x plus a right parenthesis over denominator cos space x end fraction

    Maths-General
    L e t space f left parenthesis x right parenthesis equals fraction numerator sin left parenthesis x plus a right parenthesis over denominator cos space x end fraction
P r o p e r t y space o f space p e r o d i c space f u n c t i o n space o f space p e r i o d space space T
f space left parenthesis x plus T right parenthesis equals f left parenthesis x right parenthesis
B y space p u t t i n g comma space T space equals space straight pi comma space we space get colon
fraction numerator sin space left parenthesis straight pi plus straight x plus straight a right parenthesis over denominator cos space left parenthesis straight pi plus straight x right parenthesis end fraction
equals fraction numerator negative space sin left parenthesis x plus a right parenthesis over denominator negative space cos space x end fraction
equals fraction numerator sin space left parenthesis x plus a right parenthesis over denominator cos space x end fraction
equals f left parenthesis x right parenthesis
S o comma space t h e space p e r i o d space o f space f left parenthesis x right parenthesis space i s space straight pi.
    General
    physics-

    In a network as shown in the figure, the potential difference across the resistance 2R is (the cell has an emf of E volt and has no ingternal resistance)

    In the given circuit, resistors 4R and 2R are connected in parallel while resistance R is connected in series to it.
    Hence, equivalent resistance is

    fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 R end fraction plus fraction numerator 1 over denominator 2 R end fraction
    equals fraction numerator 6 R over denominator 8 R to the power of 2 end exponent end fraction
    R to the power of ´ end exponent equals fraction numerator 8 over denominator 6 end fraction R
    equals fraction numerator 4 over denominator 3 end fraction R
    ⟹ R to the power of ´ ´ end exponent equals R plus fraction numerator 4 over denominator 3 end fraction R equals fraction numerator 7 R over denominator 3 end fraction
    Given, emf is E volts, therefore
    i equals fraction numerator E over denominator R end fraction equals fraction numerator 3 E over denominator 7 R end fraction

    Potential difference across R is
    V equals i r equals fraction numerator 3 R over denominator 7 R end fraction cross times R equals fraction numerator 3 E over denominator 7 end fraction
    Potential difference across 2R is
    V to the power of ´ end exponent equals E minus fraction numerator 3 E over denominator 7 end fraction equals fraction numerator 4 E over denominator 7 end fraction

    In a network as shown in the figure, the potential difference across the resistance 2R is (the cell has an emf of E volt and has no ingternal resistance)

    physics-General
    In the given circuit, resistors 4R and 2R are connected in parallel while resistance R is connected in series to it.
    Hence, equivalent resistance is

    fraction numerator 1 over denominator R to the power of ´ end exponent end fraction equals fraction numerator 1 over denominator 4 R end fraction plus fraction numerator 1 over denominator 2 R end fraction
    equals fraction numerator 6 R over denominator 8 R to the power of 2 end exponent end fraction
    R to the power of ´ end exponent equals fraction numerator 8 over denominator 6 end fraction R
    equals fraction numerator 4 over denominator 3 end fraction R
    ⟹ R to the power of ´ ´ end exponent equals R plus fraction numerator 4 over denominator 3 end fraction R equals fraction numerator 7 R over denominator 3 end fraction
    Given, emf is E volts, therefore
    i equals fraction numerator E over denominator R end fraction equals fraction numerator 3 E over denominator 7 R end fraction

    Potential difference across R is
    V equals i r equals fraction numerator 3 R over denominator 7 R end fraction cross times R equals fraction numerator 3 E over denominator 7 end fraction
    Potential difference across 2R is
    V to the power of ´ end exponent equals E minus fraction numerator 3 E over denominator 7 end fraction equals fraction numerator 4 E over denominator 7 end fraction
    General
    physics-

    In the adjoining figure the equivalent resistance between A and B is

    Equivalent circuit of the given circuit is

    Between points C and D resistors 2capital omega, 2capital omega and 2capital omega are in series, therefore, their equivalent resistance,
    R to the power of ´ end exponent equals 2 plus 2 plus 2 equals 6 capital omega
    Resistors R’ and 6capital omega are in parallel, therefore their equivalent resistance is given by
    fraction numerator 1 over denominator R to the power of ´ ´ end exponent end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 6 end fraction
    R to the power of ´ ´ end exponent equals 3 capital omega
    Now between points A and B 1capital omega, 3blank capital omega and 1capital omega are in series.
    Therefore, resultant resistance is
    R=1+3+1=5capital omega

    In the adjoining figure the equivalent resistance between A and B is

    physics-General
    Equivalent circuit of the given circuit is

    Between points C and D resistors 2capital omega, 2capital omega and 2capital omega are in series, therefore, their equivalent resistance,
    R to the power of ´ end exponent equals 2 plus 2 plus 2 equals 6 capital omega
    Resistors R’ and 6capital omega are in parallel, therefore their equivalent resistance is given by
    fraction numerator 1 over denominator R to the power of ´ ´ end exponent end fraction equals fraction numerator 1 over denominator 6 end fraction plus fraction numerator 1 over denominator 6 end fraction
    R to the power of ´ ´ end exponent equals 3 capital omega
    Now between points A and B 1capital omega, 3blank capital omega and 1capital omega are in series.
    Therefore, resultant resistance is
    R=1+3+1=5capital omega
    parallel
    General
    physics-

    The charge on the capacitor of capacitance C shown in the figure below will be

    The charge on the capacitor of capacitance C shown in the figure below will be

    physics-General
    General
    physics-

    Each resistance shown in figure is 2blank capital omega. The equivalent resistance between A and B is

    Given circuit is a balanced Wheatstone bridge. So, diagonal resistance of 2capital omega will be ineffective.

    Equivalent resistance of upper arms
    =2+2=4capital omega
    Equivalent resistance of lower arms
    =2+2=4capital omega
    R subscript A B end subscript equals fraction numerator 4 cross times 4 over denominator 4 plus 4 end fraction equals 2 capital omega

    Each resistance shown in figure is 2blank capital omega. The equivalent resistance between A and B is

    physics-General
    Given circuit is a balanced Wheatstone bridge. So, diagonal resistance of 2capital omega will be ineffective.

    Equivalent resistance of upper arms
    =2+2=4capital omega
    Equivalent resistance of lower arms
    =2+2=4capital omega
    R subscript A B end subscript equals fraction numerator 4 cross times 4 over denominator 4 plus 4 end fraction equals 2 capital omega
    General
    physics-

    The equivalent resistance across A and B is

    The equivalent circuit can be redrawn as

    we have, fraction numerator P over denominator Q end fraction equals fraction numerator R over denominator S end fraction
    i e comma blank fraction numerator 4 over denominator 4 end fraction equals fraction numerator 4 over denominator 4 end fraction
    So, the given circuit is a balanced Wheatstone’s bridge.
    Hence, the equivalent resistance
    R subscript A B end subscript equals fraction numerator open parentheses 4 plus 4 close parentheses cross times open parentheses 4 plus 4 close parentheses over denominator open parentheses 4 plus 4 close parentheses plus open parentheses 4 plus 4 close parentheses end fraction
    equals fraction numerator 8 cross times 8 over denominator 8 plus 8 end fraction equals fraction numerator 64 over denominator 16 end fraction equals 4 capital omega

    The equivalent resistance across A and B is

    physics-General
    The equivalent circuit can be redrawn as

    we have, fraction numerator P over denominator Q end fraction equals fraction numerator R over denominator S end fraction
    i e comma blank fraction numerator 4 over denominator 4 end fraction equals fraction numerator 4 over denominator 4 end fraction
    So, the given circuit is a balanced Wheatstone’s bridge.
    Hence, the equivalent resistance
    R subscript A B end subscript equals fraction numerator open parentheses 4 plus 4 close parentheses cross times open parentheses 4 plus 4 close parentheses over denominator open parentheses 4 plus 4 close parentheses plus open parentheses 4 plus 4 close parentheses end fraction
    equals fraction numerator 8 cross times 8 over denominator 8 plus 8 end fraction equals fraction numerator 64 over denominator 16 end fraction equals 4 capital omega
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.