Maths-
General
Easy

Question

If fraction numerator x to the power of 4 end exponent over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis end fraction equals P left parenthesis x right parenthesis plus fraction numerator A over denominator x minus a end fraction plus fraction numerator B over denominator x minus b end fraction plus fraction numerator C over denominator x minus c end fraction then P left parenthesis x right parenthesis equals

  1. x minus a    
  2. x minus a minus b    
  3. x minus a minus b minus c    
  4. x plus a plus b plus c    

Hint:

In order to integrate a rational function, it is reduced to a proper rational function. The method in which the integrand is expressed as the sum of simpler rational functions is known as decomposition into partial fractions. After splitting the integrand into partial fractions, it is integrated accordingly with the help of traditional integrating techniques.

The correct answer is: x plus a plus b plus c


     Given :
    fraction numerator x to the power of 4 end exponent over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis end fraction equals P left parenthesis x right parenthesis plus fraction numerator A over denominator x minus a end fraction plus fraction numerator B over denominator x minus b end fraction plus fraction numerator C over denominator x minus c end fraction
     To Find : P(x)
    Let P(x) be a linear polynomial i.e.  = mx + n ( since y = mx + c)
    Substitute this value in the equation
    fraction numerator x to the power of 4 over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis end fraction equals m x space plus space n plus fraction numerator A over denominator x minus a end fraction plus fraction numerator B over denominator x minus b end fraction plus fraction numerator C over denominator x minus c end fraction

    Taking LCM
    fraction numerator x to the power of 4 over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis end fraction equals fraction numerator left parenthesis m x space plus space n right parenthesis left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis space plus space A left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis plus space B left parenthesis x minus a right parenthesis left parenthesis x minus c right parenthesis space plus space C left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis space space over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis end fraction


    Cancelling denominators on both sides
    x to the power of 4 over blank equals fraction numerator left parenthesis m x space plus space n right parenthesis left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis space plus space A left parenthesis x minus b right parenthesis left parenthesis x minus c right parenthesis plus space B left parenthesis x minus a right parenthesis left parenthesis x minus c right parenthesis space plus space C left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis space space over denominator blank end fraction

    On comparing the coefficients of x to the power of 4 space comma space x cubed space comma x squared space a n d space x from both sides ,we get
    rightwards double arrowm = 1
    rightwards double arrow-am -bm -cm + n = 0 
    rightwards double arrowa + b + c = n
    rightwards double arrowP(x) =mx + n
    Substituting the values of m and n in
    rightwards double arrowP(x) = x + a + b + c

    Book A Free Demo

    +91

    Grade*

    Related Questions to study

    General
    Maths-

    Let a,b,c such that fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals fraction numerator a over denominator 1 minus x end fraction plus fraction numerator b over denominator 1 minus 2 x end fraction plus fraction numerator c over denominator 1 minus 3 x end fraction ,fraction numerator a over denominator 1 end fraction plus fraction numerator b over denominator 3 end fraction plus fraction numerator c over denominator 5 end fraction equals

    Let a,b,c such that fraction numerator 1 over denominator left parenthesis 1 minus x right parenthesis left parenthesis 1 minus 2 x right parenthesis left parenthesis 1 minus 3 x right parenthesis end fraction equals fraction numerator a over denominator 1 minus x end fraction plus fraction numerator b over denominator 1 minus 2 x end fraction plus fraction numerator c over denominator 1 minus 3 x end fraction ,fraction numerator a over denominator 1 end fraction plus fraction numerator b over denominator 3 end fraction plus fraction numerator c over denominator 5 end fraction equals

    Maths-General
    General
    Maths-

    If fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction then B=

    If fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction then B=

    Maths-General
    General
    maths-

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    maths-General
    General
    maths-

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    maths-General
    General
    maths-

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    maths-General
    General
    maths-

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    maths-General
    General
    maths-

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    maths-General
    General
    maths-

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    maths-General
    General
    maths-

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    maths-General
    General
    maths-

    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -


    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

    maths-General

    General
    maths-

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    maths-General
    General
    maths-

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    maths-General
    General
    maths-

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    maths-General
    General
    maths-

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    maths-General
    General
    maths-

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    maths-General