Physics
General
Easy
Question
Initially the spring is undeformed. Now the force 'F' is applied to 'B' as shown in the figure . When the displacement of 'B' w.r.t 'A' is 'x' towards right in some time then the relative acceleration of 'B' w.r.t. 'A' at that moment is:



 none of these
The correct answer is:
F  Kx = mb and kx = ma
Hence m (b – a) = F – 2kx
Related Questions to study
physics
Mass m shown in the figure is in equilibrium. If it is displaced further by x and released find its acceleration just after it is released. Take pulleys to be light & smooth and strings light.
Mass m shown in the figure is in equilibrium. If it is displaced further by x and released find its acceleration just after it is released. Take pulleys to be light & smooth and strings light.
physicsGeneral
physics
In the figure shown, the pulleys and strings are massless. The acceleration of the block of mass 4m just after the system is released from rest is
In the figure shown, the pulleys and strings are massless. The acceleration of the block of mass 4m just after the system is released from rest is
physicsGeneral
maths
If S and are two foci of an ellipse += 1 and P a point on it, then SP + P is equal to
If S and are two foci of an ellipse += 1 and P a point on it, then SP + P is equal to
mathsGeneral
physics
A cylinder rests in a supporting carriage as shown. The side AB of carriage makes an angle with the horizontal and side BC is vertical. The carriage lies on a fixed horizontal surface and is being pulled towards left with an horizontal acceleration 'a'. The magnitude of normal reactions exerted by sides AB and BC of carriage on the cylinder be respectively. Neglect friction everywhere. Then as the magnitude of acceleration 'a ' of the carriage is increased, pick up the correct statement:
A cylinder rests in a supporting carriage as shown. The side AB of carriage makes an angle with the horizontal and side BC is vertical. The carriage lies on a fixed horizontal surface and is being pulled towards left with an horizontal acceleration 'a'. The magnitude of normal reactions exerted by sides AB and BC of carriage on the cylinder be respectively. Neglect friction everywhere. Then as the magnitude of acceleration 'a ' of the carriage is increased, pick up the correct statement:
physicsGeneral
physics
In the figure shown, a person wants to raise a block lying on the ground to a height h. In both the cases if time required is same then in which case he has to exert more force. Assume pulleys and strings light.
In the figure shown, a person wants to raise a block lying on the ground to a height h. In both the cases if time required is same then in which case he has to exert more force. Assume pulleys and strings light.
physicsGeneral
physics
A rod of length is moving such that its ends A and B move in contact with the horizontal floor and vertical wall respectively as shown in figure. O is the intersection point of the vertical wall and horizontal floor. The velocity vector of the centre of rod C is always directed along tangent drawn at C to the –
A rod of length is moving such that its ends A and B move in contact with the horizontal floor and vertical wall respectively as shown in figure. O is the intersection point of the vertical wall and horizontal floor. The velocity vector of the centre of rod C is always directed along tangent drawn at C to the –
physicsGeneral
maths
The orthogonal projection of on are unit vectors along three mutually perpendicular directions )
The orthogonal projection of on are unit vectors along three mutually perpendicular directions )
mathsGeneral
maths
If S and are foci and A be one and of minor axis of ellipse += 1, then area of is
If S and are foci and A be one and of minor axis of ellipse += 1, then area of is
mathsGeneral
maths
Q is a point on the auxiliary circle corresponding to the point P of the ellipse = 1. If T is the foot of the perpendicular dropped from the focus S. onto the tangent to the auxiliary circle at Q then the SPT is 
Q is a point on the auxiliary circle corresponding to the point P of the ellipse = 1. If T is the foot of the perpendicular dropped from the focus S. onto the tangent to the auxiliary circle at Q then the SPT is 
mathsGeneral
physics
A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :
A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :
physicsGeneral
physics
Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:
Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:
physicsGeneral
physics
A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:
A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:
physicsGeneral
physics
A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is
A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is
physicsGeneral
physics
In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is . The normal reaction of the wall on the ladder is and that of the floor is . If the ladder is about to slip, then
In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is . The normal reaction of the wall on the ladder is and that of the floor is . If the ladder is about to slip, then
physicsGeneral
physics
A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from
tothe frictional force f versus P graph will look like
A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from
tothe frictional force f versus P graph will look like
physicsGeneral