General
Easy
Maths-

in triangle A B C,if A equals x plus 20 to the power of ring operator comma B with blank below equals 2 open parentheses x minus 10 to the power of ring operator close parentheses comma C C equals 3 over 2 x then triangle is ..... triangle

Maths-General

  1. isosceles    
  2. equilateral    
  3. scalene    
  4. right angled    

    Answer:The correct answer is: isosceles

    Book A Free Demo

    +91

    Grade

    Related Questions to study

    General
    maths-

    Lines PS, QT and RU intersect at a common point ‘O’. P is joined to Q, R to S and T to U to form triangles. Then  find the value of angle P plus angle Q plus angle R plus angle S plus angle T plus angle U equals

    Lines PS, QT and RU intersect at a common point ‘O’. P is joined to Q, R to S and T to U to form triangles. Then  find the value of angle P plus angle Q plus angle R plus angle S plus angle T plus angle U equals

    maths-General
    General
    maths-

    find the value of x in given figure.blank l parallel to m and text PI|Q end text

    find the value of x in given figure.blank l parallel to m and text PI|Q end text

    maths-General
    General
    maths-

    find the value of x in given figure.

    find the value of x in given figure.

    maths-General
    General
    maths-

    triangle A B C is an Isosceles Triangle, if A equals 92 to the power of ring operator end exponent then find ABD .

    triangle A B C is an Isosceles Triangle, if A equals 92 to the power of ring operator end exponent then find ABD .

    maths-General
    General
    maths-

    In the given figure, angle 1 equals 8 x minus 6 to the power of ring operator end exponent comma angle 3 equals 3 x plus 4 to the power of ring operator end exponent and then find angle 4 equals 4 x plus 2 to the power of ring operator end exponent then find angle 1.

    In the given figure, angle 1 equals 8 x minus 6 to the power of ring operator end exponent comma angle 3 equals 3 x plus 4 to the power of ring operator end exponent and then find angle 4 equals 4 x plus 2 to the power of ring operator end exponent then find angle 1.

    maths-General
    General
    maths-

    The value of not stretchy integral subscript 0 end subscript superscript pi end superscript open vertical bar sin to the power of 3 end exponent invisible function application rightwards arrow over short leftwards arrow theta close vertical bar d theta is

    I equals not stretchy integral subscript 0 end subscript superscript pi end superscript vertical line sin to the power of 3 end exponent invisible function application theta vertical line d theta
    Since sin invisible function application theta is positive in interval left parenthesis 0 comma pi right parenthesis
    therefore I equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin to the power of 3 end exponent invisible function application theta d theta equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin invisible function application theta left parenthesis 1 minus cos to the power of 2 end exponent invisible function application theta right parenthesis d theta
    equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin invisible function application theta d theta plus not stretchy integral subscript 0 end subscript superscript pi end superscript left parenthesis negative sin invisible function application theta right parenthesis cos to the power of 2 end exponent invisible function application theta d theta
    equals left square bracket negative cos invisible function application theta right square bracket subscript 0 end subscript superscript pi end superscript plus open parentheses fraction numerator cos to the power of 3 end exponent invisible function application theta over denominator 3 end fraction close parentheses subscript 0 end subscript superscript pi end superscript equals fraction numerator 4 over denominator 3 end fraction.

    The value of not stretchy integral subscript 0 end subscript superscript pi end superscript open vertical bar sin to the power of 3 end exponent invisible function application rightwards arrow over short leftwards arrow theta close vertical bar d theta is

    maths-General
    I equals not stretchy integral subscript 0 end subscript superscript pi end superscript vertical line sin to the power of 3 end exponent invisible function application theta vertical line d theta
    Since sin invisible function application theta is positive in interval left parenthesis 0 comma pi right parenthesis
    therefore I equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin to the power of 3 end exponent invisible function application theta d theta equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin invisible function application theta left parenthesis 1 minus cos to the power of 2 end exponent invisible function application theta right parenthesis d theta
    equals not stretchy integral subscript 0 end subscript superscript pi end superscript sin invisible function application theta d theta plus not stretchy integral subscript 0 end subscript superscript pi end superscript left parenthesis negative sin invisible function application theta right parenthesis cos to the power of 2 end exponent invisible function application theta d theta
    equals left square bracket negative cos invisible function application theta right square bracket subscript 0 end subscript superscript pi end superscript plus open parentheses fraction numerator cos to the power of 3 end exponent invisible function application theta over denominator 3 end fraction close parentheses subscript 0 end subscript superscript pi end superscript equals fraction numerator 4 over denominator 3 end fraction.
    General
    physics-

    The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance travelled by the body in 6 blank s e c are respectively

    Displacement = Summation of all the area with sign
    equals open parentheses A subscript 1 end subscript close parentheses plus open parentheses negative A subscript 2 end subscript close parentheses plus open parentheses A subscript 3 end subscript close parentheses equals open parentheses 2 cross times 4 close parentheses plus open parentheses negative 2 cross times 2 close parentheses plus open parentheses 2 cross times 2 close parentheses

    therefore D i s p l a c e m e n t equals 8 blank m
    Distance = Summation of all the areas without sign
    equals open vertical bar A subscript 1 end subscript close vertical bar plus open vertical bar negative A subscript 2 end subscript close vertical bar plus open vertical bar A subscript 3 end subscript close vertical bar equals open vertical bar 8 close vertical bar plus open vertical bar negative 4 close vertical bar plus open vertical bar 4 close vertical bar equals 8 plus 4 plus 4
    therefore D i s t a n c e equals 16 blank m

    The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance travelled by the body in 6 blank s e c are respectively

    physics-General
    Displacement = Summation of all the area with sign
    equals open parentheses A subscript 1 end subscript close parentheses plus open parentheses negative A subscript 2 end subscript close parentheses plus open parentheses A subscript 3 end subscript close parentheses equals open parentheses 2 cross times 4 close parentheses plus open parentheses negative 2 cross times 2 close parentheses plus open parentheses 2 cross times 2 close parentheses

    therefore D i s p l a c e m e n t equals 8 blank m
    Distance = Summation of all the areas without sign
    equals open vertical bar A subscript 1 end subscript close vertical bar plus open vertical bar negative A subscript 2 end subscript close vertical bar plus open vertical bar A subscript 3 end subscript close vertical bar equals open vertical bar 8 close vertical bar plus open vertical bar negative 4 close vertical bar plus open vertical bar 4 close vertical bar equals 8 plus 4 plus 4
    therefore D i s t a n c e equals 16 blank m
    General
    physics-

    The position of a particle at any instant t is given by x equals acos omega t. The speed-time graph of the particle is

    therefore blank x equals acos omega t
    therefore v equals fraction numerator d x over denominator d t end fraction equals negative a omega sin invisible function application omega t
    The instantaneous speed is given by modulus of instantaneous velocity.
    therefore blankspeedequals open vertical bar u close vertical bar equals open vertical bar negative a omega sin invisible function application omega t close vertical bar
    Hence, [c] is correct.

    The position of a particle at any instant t is given by x equals acos omega t. The speed-time graph of the particle is

    physics-General
    therefore blank x equals acos omega t
    therefore v equals fraction numerator d x over denominator d t end fraction equals negative a omega sin invisible function application omega t
    The instantaneous speed is given by modulus of instantaneous velocity.
    therefore blankspeedequals open vertical bar u close vertical bar equals open vertical bar negative a omega sin invisible function application omega t close vertical bar
    Hence, [c] is correct.
    General
    physics-

    A train moves from one station to another 2 hours time. Its speed-time graph during this motion is shown in the figure. The maximum acceleration during the journey is

    Maximum acceleration will be represented by C D part of the graph
    Acceleration equals fraction numerator d v over denominator d t end fraction equals fraction numerator left parenthesis 60 minus 20 right parenthesis over denominator 0.25 end fraction equals 160 blank k m divided by h to the power of 2 end exponent

    A train moves from one station to another 2 hours time. Its speed-time graph during this motion is shown in the figure. The maximum acceleration during the journey is

    physics-General
    Maximum acceleration will be represented by C D part of the graph
    Acceleration equals fraction numerator d v over denominator d t end fraction equals fraction numerator left parenthesis 60 minus 20 right parenthesis over denominator 0.25 end fraction equals 160 blank k m divided by h to the power of 2 end exponent
    General
    maths-

    if a to the power of 2 end exponent plus b to the power of 2 end exponent plus c to the power of 2 end exponent equals a b plus b c plus c a then the triangle is

    if a to the power of 2 end exponent plus b to the power of 2 end exponent plus c to the power of 2 end exponent equals a b plus b c plus c a then the triangle is

    maths-General
    General
    maths-

    In the diagram, if triangle A B C and capital delta P Q R are Equilateral then find text C  end text X Y

    In the diagram, if triangle A B C and capital delta P Q R are Equilateral then find text C  end text X Y

    maths-General
    General
    maths-

    In given figure stack A B with rightwards arrow on top equals stack A C with bar on top and stack B C with bar on top equals stack C D with bar on top comma if B A C equals 80 to the power of ring operator end exponent blankthen find ∣ C D B

    In given figure stack A B with rightwards arrow on top equals stack A C with bar on top and stack B C with bar on top equals stack C D with bar on top comma if B A C equals 80 to the power of ring operator end exponent blankthen find ∣ C D B

    maths-General
    General
    maths-

    In triangle A B C if AD is bisector of stack B A C with blank below and DE bisects open floor B D A comma open floor B equals 40 to the power of ring operator end exponent comma open floor C equals 80 to the power of ring operator end exponent close close close find left floor B E D.

    In triangle A B C if AD is bisector of stack B A C with blank below and DE bisects open floor B D A comma open floor B equals 40 to the power of ring operator end exponent comma open floor C equals 80 to the power of ring operator end exponent close close close find left floor B E D.

    maths-General
    General
    maths-

    in triangle A B C text  , end text BC = 13, CA=14, AB=15. If D is a point on stack A C with bar on top such that stack B D with bar on top perpendicular stack A C with bar on top then length of stack B D with bar on top.

    in triangle A B C text  , end text BC = 13, CA=14, AB=15. If D is a point on stack A C with bar on top such that stack B D with bar on top perpendicular stack A C with bar on top then length of stack B D with bar on top.

    maths-General
    General
    maths-

    The three s ides of triangle A B C are extended as shown so that B D equals fraction numerator 1 over denominator 2 end fraction A B comma C E equals fraction numerator 1 over denominator 2 end fraction B C and A F equals fraction numerator 1 over denominator 2 end fraction C A Find the ratio of the area of capital delta D E F to that of triangle A B C.

    The three s ides of triangle A B C are extended as shown so that B D equals fraction numerator 1 over denominator 2 end fraction A B comma C E equals fraction numerator 1 over denominator 2 end fraction B C and A F equals fraction numerator 1 over denominator 2 end fraction C A Find the ratio of the area of capital delta D E F to that of triangle A B C.

    maths-General