Physics-
General
Easy

Question

Three objects A comma B and C are kept in a straight line on a frictionless horizontal surface. These have masses m comma blank 2 m and m respectively. The object A moves towards B with a speed 9 blank m divided by s and makes an elastic collision with it. Thereafter, B makes completely inelastic collision with C. All motions occur on the same straight line. Find the final speed (in m divided by s) of the object C

  1. 3 blank m divided by s    
  2. 4 blank m divided by s    
  3. 5 blank m divided by s    
  4. 1 blank m divided by s    

The correct answer is: 4 blank m divided by s



    v subscript 2 end subscript equals fraction numerator 2 m subscript 1 end subscript v subscript 1 end subscript over denominator m subscript 1 end subscript plus m subscript 2 end subscript end fraction equals fraction numerator 2 cross times m cross times 9 over denominator m plus 2 m end fraction equals 6 blank m divided by s
    i. e. After elastic collision B strikes to C with velocity of 6 blank m divided by s. Now collision between B and C is perfectly inelastic

    By the law of conservation of momentum
    2 m cross times 6 plus 0 equals 3 m cross times v subscript s y s end subscript
    rightwards double arrow v subscript s y s end subscript equals 4 blank m divided by s

    Related Questions to study

    General
    physics-

    The relation between the displacement X of an object produced by the application of the variable force F is represented by a graph shown in the figure. If the object undergoes a displacement from X equals 0.5 blank m to X equals 2.5 blank m the work done will be approximately equal to

    The relation between the displacement X of an object produced by the application of the variable force F is represented by a graph shown in the figure. If the object undergoes a displacement from X equals 0.5 blank m to X equals 2.5 blank m the work done will be approximately equal to

    physics-General
    General
    physics-

    In the given curved road, if particle is released from A then

    In the given curved road, if particle is released from A then

    physics-General
    General
    physics-

    A body of mass 2 blank k g slides down a curved track which is quadrant of a circle of radius 1 blank m e t r e. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is

    A body of mass 2 blank k g slides down a curved track which is quadrant of a circle of radius 1 blank m e t r e. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is

    physics-General
    parallel
    General
    physics-

    A 10 kg brick moves along an x-axis. Its acceleration as a function of its position is shown in figure. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x equals 0 to x equals 8.0m?

    A 10 kg brick moves along an x-axis. Its acceleration as a function of its position is shown in figure. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x equals 0 to x equals 8.0m?

    physics-General
    General
    physics-

    Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 blank m

    Force F on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 blank m

    physics-General
    General
    physics-

    The potential energy of a system is represented in the first figure. The force acting on the system will be represented by

    The potential energy of a system is represented in the first figure. The force acting on the system will be represented by

    physics-General
    parallel
    General
    physics-

    The work done by force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 m is

    The work done by force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 m is

    physics-General
    General
    physics-

    Two rectangular blocks A blankand B blankof masses 2kg and 3 kg respectively are connected by spring of spring constant 10.8 N m to the power of negative 1 end exponentand are placed on a frictionless horizontal surface. The block A blankwas given an initial velocity of 0.15 m s to the power of negative 1 end exponent in the direction shown in the figure. The maximum compression of the spring during the motion is

    Two rectangular blocks A blankand B blankof masses 2kg and 3 kg respectively are connected by spring of spring constant 10.8 N m to the power of negative 1 end exponentand are placed on a frictionless horizontal surface. The block A blankwas given an initial velocity of 0.15 m s to the power of negative 1 end exponent in the direction shown in the figure. The maximum compression of the spring during the motion is

    physics-General
    General
    physics-

    Six identical balls are linked in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide elastically with the row of 6 balls from left. What will happen

    Six identical balls are linked in a straight groove made on a horizontal frictionless surface as shown. Two similar balls each moving with a velocity v collide elastically with the row of 6 balls from left. What will happen