## Key Concepts

- Define sets and subsets
- Represent real numbers on number line
- Compare and order real numbers
- Perform operations on real numbers
- Perform operations on rational and irrational numbers

### Operations on Integers

- When we add two integers have different signs, subtract and keep the sign of the larger integer.
- When we add two integers that have the same signs, add the integers and keep the common sign.
- When two integers have opposite signs, their product/quotient is negative.
- When two integers have the same signs, their product/quotient is positive.
- While subtracting integers, change to add the opposite.

#### Order of operations

The order of operations is as follows:

- Brackets
- Division/Multiplication
- Addition/Subtraction

**Example: **Following the order of operations, solve

3−(4×5)÷2+

**Sol: **The order of operations is brackets, division/multiplication (from left to right), addition/subtraction (from left to right).

3−(4×5)÷2+6 = 3−20÷2+6

= 3−10+6

= −7+6

= −1

### Decimal numbers

#### Rounding off decimal numbers

- If the critical digit is 0, 1, 2, 3 or 4, then round down.

- If the critical digit is 5, 6, 7, 8 or 9, then round up.

### Fraction

A part of a whole is called a fraction.

**Example:** Fraction representing shaded region in

#### Types of fractions

**Proper fraction:**The fraction whose value is less than a whole i.e., numerator is smaller than the denominator.

**Improper fraction:**A fraction which is more than a whole, i.e., the numerator is larger than the denominator.

**Mixed fraction:**A whole number and a fraction together.

### Real numbers

#### Sets and subsets

- A
**set**is a well-defined collection of objects.

An organised arrangement of well-defined objects or elements is called a set.

A set is represented by a capital letter.

The elements of a set are represented in curly braces {}.

Example: If A = {1, 2, 3, 4, 5, 6}

The elements of set A are 1, 2, 3, 4, 5, 6.

- A
**subset**is a set of which all the elements are contained in another set. - Each unique object that belongs to a set is an
**element**of the set.

**Example:** Consider the numbers between 20 and 30.

Let us name the set of numbers between 20 and 30 as N.

N = {21, 22, 23, 24, 25, 26, 27, 28, 29}

Let the subset of prime numbers between 20 and 30 be S

S = {23, 29}

Let the subset of odd numbers between 20 and 30 be R

R = {21, 23, 25, 27, 29}

All the elements of subsets S and R are the elements of set N.

#### Representing real numbers on number line

We can represent whole numbers on number line.

We can represent integers on number line.

We can represent fractions on number line.

We can represent decimals on number line.

We can represent all the real numbers on the number line.

**Compare and Order real numbers**

- To compare real numbers, follow the steps:

**Step 1: **Find the decimal equivalent for each number.

**Step 2: **Then plot the numbers on number line.

**Example:**Compare and order 40/11, √324/36, √10

**Step 1:** Find decimal equivalent

40/11 = 3.63-

√324/36 =18/6 =3

√10 = 3.2

**Step 2:** Plot them on a number line

### Perform operations on rational numbers

- To add two rational numbers with different denominators, take the LCM of the denominators and add the numerators.

a/b + c/d = ad/bd + bc/bd = ad+bc/bd

The sum of two rational numbers is a rational number.

- To multiply two rational numbers, multiply the numerators and denominators.

a/b ⋅ c/d = ac/bd

The product of two rational numbers is a rational number.

#### Perform operations on rational and irrational numbers

- To add a rational number and an irrational number:

a/b + c ≠ pq

The sum of a rational and an irrational number is an irrational number.

- To multiply a rational number with an irrational number:

a/b ⋅ c ≠ pq

The product of a rational and an irrational number is an irrational number.

## Exercise

- Determine whether set B is subset of set A if:

Set A = {0,1,2,3,4,5,6}

Set B = {3,5,1}

- Order the real numbers from least to greatest: √200, 14, 41/3
- Identify if the solution is a rational number or irrational number: 4/7 + -1/3
- What is the square root of √144/256?
- Arrange the real numbers in descending order: 2/3, 6.33, √32

### Concept Map

### What have we learned

- The sum of two rational numbers is a rational number.
- The product of two rational numbers is a rational number.
- The sum of a rational number and an irrational number is an irrational number.
- The product of a rational number and an irrational number is an irrational number.

#### Related topics

#### Addition and Multiplication Using Counters & Bar-Diagrams

Introduction: We can find the solution to the word problem by solving it. Here, in this topic, we can use 3 methods to find the solution. 1. Add using counters 2. Use factors to get the product 3. Write equations to find the unknown. Addition Equation: 8+8+8 =? Multiplication equation: 3×8=? Example 1: Andrew has […]

Read More >>#### Dilation: Definitions, Characteristics, and Similarities

Understanding Dilation A dilation is a transformation that produces an image that is of the same shape and different sizes. Dilation that creates a larger image is called enlargement. Describing Dilation Dilation of Scale Factor 2 The following figure undergoes a dilation with a scale factor of 2 giving an image A’ (2, 4), B’ […]

Read More >>#### How to Write and Interpret Numerical Expressions?

Write numerical expressions What is the Meaning of Numerical Expression? A numerical expression is a combination of numbers and integers using basic operations such as addition, subtraction, multiplication, or division. The word PEMDAS stands for: P → Parentheses E → Exponents M → Multiplication D → Division A → Addition S → Subtraction Some examples […]

Read More >>#### System of Linear Inequalities and Equations

Introduction: Systems of Linear Inequalities: A system of linear inequalities is a set of two or more linear inequalities in the same variables. The following example illustrates this, y < x + 2…………..Inequality 1 y ≥ 2x − 1…………Inequality 2 Solution of a System of Linear Inequalities: A solution of a system of linear inequalities […]

Read More >>
Comments: